Bioengineering strategies for the fabrication of implantable lymphoid structures mimicking lymph nodes (LNs) and tertiary lymphoid structures (TLS) could amplify the adaptive immune response for therapeutic applications such as cancer immunotherapy. No method to date has resulted in the consistent formation of high endothelial venules (HEVs), which is the specialized vasculature responsible for naïve T cell recruitment and education in both LNs and TLS. Here orthogonal induced differentiation of human pluripotent stem cells carrying a regulatable ETV2 allele is used to rapidly and efficiently induce endothelial differentiation.
View Article and Find Full Text PDFA number of genetic kidney diseases can now be replicated experimentally, using kidney organoids generated from human pluripotent stem cells. This methodology holds great potential for drug discovery. Under in vitro conditions, however, kidney organoids remain developmentally immature, develop scarce vasculature, and may contain undesired off-target cell types.
View Article and Find Full Text PDFWith the increasing volume of cardiovascular surgeries and the rising adoption rate of new methodologies that serve as a bridge to cardiac transplantation and that require multiple surgical interventions, the formation of postoperative intrapericardial adhesions has become a challenging problem that limits future surgical procedures, causes serious complications, and increases medical costs. To prevent this pathology, we developed a nanotechnology-based self-healing drug delivery hydrogel barrier composed of silicate nanodisks and polyethylene glycol with the ability to coat the epicardial surface of the heart without friction and locally deliver dexamethasone, an anti-inflammatory drug. After the fabrication of the hydrogel, mechanical characterization and responses to shear, strain, and recovery were analyzed, confirming its shear-thinning and self-healing properties.
View Article and Find Full Text PDFRecent studies demonstrate that metabolic disturbance, such as augmented glycolysis, contributes to fibrosis. The molecular regulation of this metabolic perturbation in fibrosis, however, has been elusive. COUP-TFII (also known as NR2F2) is an important regulator of glucose and lipid metabolism.
View Article and Find Full Text PDFAlthough the immune response within draining lymph nodes (DLNs) has been studied for decades, how their stromal compartment contributes to this process remains to be fully explored. Here, we show that donor mast cells were prominent activators of collagen I deposition by fibroblastic reticular cells (FRCs) in DLNs shortly following transplantation. Serial analysis of the DLN indicated that the LN stroma did not return to its baseline microarchitecture following organ rejection and that the DLN contained significant fibrosis following repetitive organ transplants.
View Article and Find Full Text PDFThe cardiac stroma contains multipotent mesenchymal progenitors. However, lineage relationships within cardiac stromal cells are poorly defined. Here, we identified heart-resident PDGFRa SCA-1 cells as cardiac fibro/adipogenic progenitors (cFAPs) and show that they respond to ischemic damage by generating fibrogenic cells.
View Article and Find Full Text PDFAs new applications for human pluripotent stem cell-derived organoids in drug screenings and tissue replacement therapies emerge, there is a need to examine the mechanisms of tissue injury and repair recently reported for various organoid models. In most cases, organoids contain the main cell types and tissues present in human organs, spatially arranged in a manner that largely resembles the architecture of the organ. Depending on the differentiation protocol used, variations may exist in cell type ratios relative to the organ of reference, and certain tissues, including some parenchymal components and the endothelium, might be poorly represented, or lacking altogether.
View Article and Find Full Text PDFKidney injury is characterized by persisting inflammation and fibrosis, yet mechanisms by which inflammatory signals drive fibrogenesis remain poorly defined. RNA sequencing of fibrotic kidneys from patients with CKD identified a metabolic gene signature comprising loss of mitochondrial and oxidative phosphorylation gene expression with a concomitant increase in regulators and enzymes of glycolysis under the control of PGC1 and MYC transcription factors, respectively. We modeled this metabolic switch , in experimental murine models of kidney injury, and in human kidney stromal cells (SCs) and human kidney organoids.
View Article and Find Full Text PDFRecent scientific findings support the notion that fibrosis is driven by tissue-specific cellular and molecular mechanisms. Analysis of seemingly equivalent mesenchymal stromal cell (MSC) populations residing in different organs revealed unique properties and lineage capabilities that vary from one anatomical location to another. We review recently characterized tissue-resident MSC populations with a prominent role in fibrosis and highlight therapeutically relevant molecular pathways regulating their activity in chronic disease.
View Article and Find Full Text PDFAcute skeletal muscle injury triggers an expansion of fibro/adipogenic progenitors (FAPs) and a transient stage of fibrogenesis characterized by extracellular matrix deposition. While the perpetuation of such phase can lead to permanent tissue scarring, the consequences of its suppression remain to be studied. Using a model of acute muscle damage we were able to determine that pharmacological inhibition of FAP expansion by Nilotinib, a tyrosine kinase inhibitor with potent antifibrotic activity, exerts a detrimental effect on myogenesis during regeneration.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
December 2016
Pericytes are tissue-resident mesenchymal progenitor cells anatomically associated with the vasculature that have been shown to participate in tissue regeneration. Here, we tested the hypothesis that kidney pericytes, derived from FoxD1 mesodermal progenitors during embryogenesis, are necessary for postnatal kidney homeostasis. Diphtheria toxin delivery to FoxD1Cre::RsDTR transgenic mice resulted in selective ablation of >90% of kidney pericytes but not other cell lineages.
View Article and Find Full Text PDFRecent research has highlighted the importance of bone and muscle interactions during development and regeneration. There still remains, however, a large gap in the current understanding of the cells and mechanisms involved in this interplay. In particular, how muscle-derived cells, specifically mesenchymal stromal cells (MSCs), can impact bone regeneration or lead to pathologic ectopic bone formation is unclear.
View Article and Find Full Text PDFDepending on the inflammatory milieu, injury can result either in a tissue's complete regeneration or in its degeneration and fibrosis, the latter of which could potentially lead to permanent organ failure. Yet how inflammatory cells regulate matrix-producing cells involved in the reparative process is unknown. Here we show that in acutely damaged skeletal muscle, sequential interactions between multipotent mesenchymal progenitors and infiltrating inflammatory cells determine the outcome of the reparative process.
View Article and Find Full Text PDFAdult stem cells are activated to proliferate and differentiate during normal tissue homeostasis as well as in disease states and injury. This activation is a vital component in the restoration of function to damaged tissue via either complete or partial regeneration. When regeneration does not fully occur, reparative processes involving an overproduction of stromal components ensure the continuity of tissue at the expense of its normal structure and function, resulting in a "reparative disorder".
View Article and Find Full Text PDFPathologies characterized by lipomatous infiltration of craniofacial structures as well as certain forms of lipodystrophies suggest the existence of a distinct adipogenic program in the cephalic region of mammals. Using lineage tracing, we studied the origin of craniofacial adipocytes that accumulate both in cranial fat depots and during ectopic lipomatous infiltration of craniofacial muscles. We found that unlike their counterparts in limb muscle, a significant percentage of cranial adipocytes is derived from the neural crest (NC).
View Article and Find Full Text PDFThe development of species-specific gene microarrays has greatly facilitated gene expression profiling in nonhuman primates. However, to obtain accurate and physiologically meaningful data from these microarrays, one needs to consider several factors when designing the studies. This article focuses on effective experimental design while the companion article focuses on methodology and data analysis.
View Article and Find Full Text PDFIn temperate zones, day length changes markedly across the year, and in many mammals these photoperiodic variations are associated with physiological adaptations. However, the influence of this environmental variable on human behavior and physiology is less clear, and the potential underlying mechanisms are unknown. To address this issue, we examined the effect of changing photoperiods on adrenal gland function in ovariectomized female rhesus macaques (Macaca mulatta), both in terms of steroid hormone output and in terms of gene expression.
View Article and Find Full Text PDFRecent studies have shown that circadian clock genes are expressed in various peripheral tissues, raising the possibility that multiple clocks regulate circadian physiology. To study clock gene expression in the rhesus macaque pituitary gland we used gene microarray data and found that the pituitary glands of young and old adult males express several components of the circadian clock (Per1, Per2, Cry1, Bmal1, Clock, Rev-erbalpha and Csnk1varepsilon). Semi-quantitative reverse-transcription polymerase chain reaction (sqRT-PCR) confirmed the presence of these core-clock genes and detected significant age-related differences in the expression of Per2.
View Article and Find Full Text PDFIn mammals, adrenal medulla chromaffin cells constitute a fundamental component of the sympathetic nervous system outflow, producing most of the circulating adrenaline. We recently found that the rhesus monkey adrenal gland expresses several genes in a 24-h rhythmic pattern, including TH (the rate-limiting enzyme in catecholamine synthesis) and Atf5 (a transcription factor involved in apoptosis and neural cell differentiation) together with the core-clock genes. To examine whether these core-clock genes play a role in adrenal circadian function, we exposed rat pheochromocytoma PC12 cells to a serum shock and found that it triggered rhythmic oscillation of the clock genes rBmal1, rPer1, rRev-erbalpha, and rCry1 and induced the circadian expression of Atf5 but not TH.
View Article and Find Full Text PDFYFR041C/ERJ5 was identified in Saccharomyces cerevisiae as a gene regulated by the unfolded protein response pathway (UPR). The open reading frame of the gene has a J domain characteristic of the DnaJ chaperone family of proteins that regulate the activity of Hsp70 chaperones. We determined the expression and topology of Erj5p, a type I membrane protein with a J domain in the lumen of the endoplasmic reticulum (ER) that colocalizes with Kar2p, the major Hsp70 in the yeast ER.
View Article and Find Full Text PDF