Publications by authors named "Dario Gioia"

In cystic fibrosis (CF), deletion of phenylalanine 508 (F508del) in the CF transmembrane conductance regulator (CFTR) is associated to misfolding and defective gating of the mutant channel. One of the most promising CF drug targets is the ubiquitin ligase RNF5, which promotes F508del-CFTR degradation. Recently, the first ever reported inhibitor of RNF5 was discovered, i.

View Article and Find Full Text PDF

The binding and release of ligands from their protein targets is central to fundamental biological processes as well as to drug discovery. Photopharmacology introduces chemical triggers that allow the changing of ligand affinities and thus biological activity by light. Insight into the molecular mechanisms of photopharmacology is largely missing because the relevant transitions during the light-triggered reaction cannot be resolved by conventional structural biology.

View Article and Find Full Text PDF

RAD51 is an ATP-dependent recombinase, recruited by BRCA2 to mediate DNA double-strand breaks repair through homologous recombination and represents an attractive cancer drug target. Herein, we applied for the first-time protein-templated dynamic combinatorial chemistry on RAD51 as a hit identification strategy. Upon design of -acylhydrazone-based dynamic combinatorial libraries, RAD51 showed a clear templating effect, amplifying 19 -acylhydrazones.

View Article and Find Full Text PDF

Microtubules (MTs) are dynamic filaments of the cytoskeleton, which are formed by the polymerization of their building block tubulin. Perturbation of MT dynamics by MT-targeting agents (MTAs) leads to cell cycle arrest or cell death, a strategy that is pursued in chemotherapy. We recently performed a combined computational and crystallographic fragment screening approach and identified several tubulin-binding fragments.

View Article and Find Full Text PDF

In this study, we capitalized on our previously performed crystallographic fragment screen and developed the antitubulin small molecule Todalam with only two rounds of straightforward chemical synthesis. Todalam binds to a novel tubulin site, disrupts microtubule networks in cells, arrests cells in G2/M, induces cell death, and synergizes with vinblastine. The compound destabilizes microtubules by acting as a molecular plug that sterically inhibits the curved-to-straight conformational switch in the α-tubulin subunit, and by sequestering tubulin dimers into assembly incompetent oligomers.

View Article and Find Full Text PDF

Tubulin plays essential roles in vital cellular activities and is the target of a wide range of proteins and ligands. Here, using a combined computational and crystallographic fragment screening approach, we addressed the question of how many binding sites exist in tubulin. We identified 27 distinct sites, of which 11 have not been described previously, and analyzed their relationship to known tubulin-protein and tubulin-ligand interactions.

View Article and Find Full Text PDF

Urease is a nickel-containing enzyme that is essential for the survival of several and often deadly pathogenic bacterial strains, including . Notwithstanding several attempts, the development of direct urease inhibitors without side effects for the human host remains, to date, elusive. The recently solved X-ray structure of the UreDFG accessory complex involved in the activation of urease opens new perspectives for structure-based drug discovery.

View Article and Find Full Text PDF
Article Synopsis
  • Synthetic lethality offers a new way to find anticancer drugs, specifically using small organic molecules to trigger cancer cell death.
  • Researchers discovered a molecule that disrupts the RAD51-BRCA2 interaction, mimicking the effects of BRCA mutations and inhibiting homologous recombination in pancreatic cancer cells.
  • This approach works with existing PARP inhibitors, potentially expanding treatment options for patients with specific genetic profiles and olaparib resistance.
View Article and Find Full Text PDF

Molecular docking is the methodology of choice for studying in silico protein-ligand binding and for prioritizing compounds to discover new lead candidates. Traditional docking simulations suffer from major limitations, mostly related to the static or semi-flexible treatment of ligands and targets. They also neglect solvation and entropic effects, which strongly limits their predictive power.

View Article and Find Full Text PDF

Transition metals are both essential micronutrients and limited in environmental availability. The Ni(II)-dependent urease protein, the most efficient enzyme known to date, is a paradigm for studying the strategies that cells use to handle an essential, yet toxic, metal ion. Urease is a virulence factor of several human pathogens, in addition to decreasing the efficiency of soil organic nitrogen fertilization.

View Article and Find Full Text PDF