IEEE Trans Biomed Circuits Syst
August 2024
The realization of brain-scale spiking neural networks (SNNs) is impeded by power constraints and low integration density. To address these challenges, multi-core SNNs are utilized to emulate numerous neurons with high energy efficiency, where spike packets are routed through a network-on-chip (NoC). However, the information can be lost in the NoC under high spike traffic conditions, leading to performance degradation.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Within this paper, we demonstrate the feasibility of the FPGA implementation as well as the 180nm CMOS circuit design of a particular biologically plausible supervised learning algorithm (ReSuMe). Based on the Spike-Timing-Dependent Plasticity (STDP) learning phenomenon, this design proposes a fully configurable implementation of STDP learning window function to adjust the learning process for different applications, optimizing results for each use case. The CMOS implementation in 180nm technology node supplied with 1.
View Article and Find Full Text PDF