The interaction between peptides and major histocompatibility complex (MHC) molecules is pivotal in autoimmunity, pathogen recognition and tumor immunity. Recent advances in cancer immunotherapies demand for more accurate computational prediction of MHC-bound peptides. We address the generalizability challenge of MHC-bound peptide predictions, revealing limitations in current sequence-based approaches.
View Article and Find Full Text PDFT-cell specificity to differentiate between self and non-self relies on T-cell receptor (TCR) recognition of peptides presented by the Major Histocompatibility Complex (MHC). Investigations into the three-dimensional (3D) structures of peptide:MHC (pMHC) complexes have provided valuable insights of MHC functions. Given the limited availability of experimental pMHC structures and considerable diversity of peptides and MHC alleles, it calls for the development of efficient and reliable computational approaches for modeling pMHC structures.
View Article and Find Full Text PDFMajor histocompatibility complexes (MHC) play a key role in the immune surveillance system in all jawed vertebrates. MHC class I molecules randomly sample cytosolic peptides from inside the cell, while MHC class II sample exogenous peptides. Both types of peptide:MHC complex are then presented on the cell surface for recognition by αβ T cells (CD8+ and CD4+, respectively).
View Article and Find Full Text PDFDeeper understanding of T-cell-mediated adaptive immune responses is important for the design of cancer immunotherapies and antiviral vaccines against pandemic outbreaks. T-cells are activated when they recognize foreign peptides that are presented on the cell surface by Major Histocompatibility Complexes (MHC), forming peptide:MHC (pMHC) complexes. 3D structures of pMHC complexes provide fundamental insight into T-cell recognition mechanism and aids immunotherapy design.
View Article and Find Full Text PDFThree-dimensional (3D) structures of protein complexes provide fundamental information to decipher biological processes at the molecular scale. The vast amount of experimentally and computationally resolved protein-protein interfaces (PPIs) offers the possibility of training deep learning models to aid the predictions of their biological relevance. We present here DeepRank, a general, configurable deep learning framework for data mining PPIs using 3D convolutional neural networks (CNNs).
View Article and Find Full Text PDF