Knee osteoarthritis is experienced by hundreds of millions of people worldwide and is a major cause of disability. Although enhancing physical activity levels and the participation in exercise programmes has been proved to improve the debilitating illness of osteoarthritis, many do not engage in recommended levels of physical activity. One of the reported barriers to exercise engagement is the perception that physical activity can damage joint health and is attributed to the incorrect perception of 'wear and tear'.
View Article and Find Full Text PDFBackground: Loss of communication with loved ones and carers is one of the most isolating and debilitating effects of many neurological disorders. Assistive technology (AT) supports individuals with communication, but the acceptability of AT solutions is highly variable. In this paper a novel ear based control method of AT, the concept of 'EarSwitch', is presented.
View Article and Find Full Text PDFDimensionality reduction is a critical step for the efficacy and efficiency of clustering analysis. Despite the multiple available methods, biomechanists have often defaulted to Principal Component Analysis (PCA). We evaluated two PCA- and one autoencoder-based dimensionality reduction methods for their data compression and reconstruction capability, assessed their effect on the output of clustering runners' based on kinematics, and discussed their implications for the biomechanical assessment of running technique.
View Article and Find Full Text PDFObjectives: To determine the rates, severity and burden of knee injuries in professional male rugby union from the English Premiership.
Methods: Injury and exposure data were captured over 20 seasons using a prospective cohort design. Knee injury incidence, days' absence and burden were recorded for each injury type and by pitch surface type for match and training.
Ground reaction force (GRF) data is often collected for the biomechanical analysis of running, due to the performance and injury risk insights that GRF analysis can provide. Traditional methods typically limit GRF collection to controlled lab environments, recent studies have looked to combine the ease of use of wearable sensors with the statistical power of machine learning to estimate continuous GRF data outside of these restrictions. Before such systems can be deployed with confidence outside of the lab they must be shown to be a valid and accurate tool for a wide range of users.
View Article and Find Full Text PDFEstablishing the links between running technique and economy remains elusive due to high inter-individual variability. Clustering runners by technique may enable tailored training recommendations, yet it is unclear if different techniques are equally economical and whether clusters are speed-dependent. This study aimed to identify clusters of runners based on technique and to compare cluster kinematics and running economy.
View Article and Find Full Text PDFBackground: Low back pain (LBP) is a major global disability contributor with profound health and socio-economic implications. The predominant form is non-specific LBP (NSLBP), lacking treatable pathology. Active physical interventions tailored to individual needs and capabilities are crucial for its management.
View Article and Find Full Text PDFSpaceflight is associated with severe muscular adaptations with substantial inter-individual variability. A Hill-type muscle model is a common method to replicate muscle physiology in musculoskeletal simulations, but little is known about how the underlying parameters should be adjusted to model adaptations to unloading. The aim of this study was to determine how Hill-type muscle model parameters should be adjusted to model disuse muscular adaptations.
View Article and Find Full Text PDFSpaceflight is associated with substantial and variable musculoskeletal (MSK) adaptations. Characterisation of muscle and joint loading profiles can provide key information to better align exercise prescription to astronaut MSK adaptations upon return-to-Earth. A case-study is presented of single-leg hopping in hypogravity to demonstrate the additional benefit computational MSK modelling has when estimating lower-limb MSK loading.
View Article and Find Full Text PDFTackling in Rugby Union is associated with most match injuries. New tackle regulations have been explored to reduce injuries, but limited quantitative evidence is available to inform any law changes. Using a novel tackle simulator, we investigated upper body loading under different tackling conditions: direction of approach (0° - frontal, 45° and 90° to the ball carrier direction) and side of body (dominant vs.
View Article and Find Full Text PDFIntroduction: The prevalence of intra-articular knee injuries and reparative surgeries is increasing in many countries. Alarmingly, there is a risk of developing post-traumatic osteoarthritis (PTOA) after sustaining a serious intra-articular knee injury. Although physical inactivity is suggested as a risk factor contributing to the high prevalence of the condition, there is a paucity of research characterising the association between physical activity and joint health.
View Article and Find Full Text PDFBMJ Open Sport Exerc Med
December 2022
Professional horse racing is a high-risk and dangerous sport with a high incidence of falls and injuries. While falls in horse racing are considered somewhat inevitable and carry an inherent occupational risk, little is known about the actual mechanisms of jockey injuries. Establishing injury aetiology and mechanism is a fundamental step in informing the design and implementation of future injury prevention strategies.
View Article and Find Full Text PDFBackground: Exposure to prolonged periods in microgravity is associated with deconditioning of the musculoskeletal system due to chronic changes in mechanical stimulation. Given astronauts will operate on the Lunar surface for extended periods of time, it is critical to quantify both external (e.g.
View Article and Find Full Text PDFThe current body of sprinting biomechanics literature together with the front-side mechanics coaching framework provide various technique recommendations for improving performance. However, few studies have attempted to systematically explore technique modifications from a performance enhancement perspective. The aims of this investigation were therefore to explore how hypothetical technique modifications affect accelerative sprinting performance and assess whether the hypothetical modifications support the front-side mechanics coaching framework.
View Article and Find Full Text PDFKnowledge of neck muscle activation strategies before sporting impacts is crucial for investigating mechanisms of severe spinal injuries. However, measurement of muscle activations during impacts is experimentally challenging and computational estimations are not often guided by experimental measurements. We investigated neck muscle activations before impacts with the use of electromyography (EMG)-assisted neuromusculoskeletal models.
View Article and Find Full Text PDFThe accurate detection of foot-strike and toe-off is often critical in the assessment of running biomechanics. The gold standard method for step event detection requires force data which are not always available. Although kinematics-based algorithms can also be used, their accuracy and generalisability are limited, often requiring corrections for speed or foot-strike pattern.
View Article and Find Full Text PDFBiomechanical simulation and modelling approaches have the possibility to make a meaningful impact within applied sports settings, such as sprinting. However, for this to be realised, such approaches must first undergo a thorough quantitative evaluation against experimental data. We developed a musculoskeletal modelling and simulation framework for sprinting, with the objective to evaluate its ability to reproduce experimental kinematics and kinetics data for different sprinting phases.
View Article and Find Full Text PDFClinical assessment of spinal impairment in Axial Spondyloarthritis is currently performed using the Bath Ankylosing Spondylitis Metrological Index (BASMI). Despite being appreciated for its simplicity, the BASMI index lacks sensitivity and specificity of spinal changes, demonstrating poor association with radiographical range of motion (ROM). Inertial measurement units (IMUs) have shown promising results as a cost-effective method to quantitatively examine movement of the human body, however errors due to sensor angular drift have limited their application to a clinical space.
View Article and Find Full Text PDFTraining load monitoring has grown in recent years with the acute:chronic workload ratio (ACWR) widely used to aggregate data to inform decision-making on injury risk. Several methods have been described to calculate the ACWR and numerous methodological issues have been raised. Therefore, this study examined the relationship between the ACWR and injury in a sample of 696 players from 13 professional rugby clubs over two seasons for 1718 injuries of all types and a further analysis of 383 soft tissue injuries specifically.
View Article and Find Full Text PDFWearable sensors and motion capture technology are accepted instruments to measure spatiotemporal variables during punching performance and to study the externally observable effects of fatigue. This study aimed to develop a computational framework enabling three-dimensional inverse dynamics analysis through the tracking of punching kinematics obtained from inertial measurement units and uniplanar videography. The framework was applied to six elite male boxers performing a boxing-specific punch fatigue protocol.
View Article and Find Full Text PDFIntroduction: Hip fractures are common and disabling injuries, usually managed surgically. The most common type outside the joint capsule are trochanteric fractures, usually fixed with either sliding hip screw or intramedullary nail. Data are available in the National Hip Fracture Database (NHFD) on early failure and other major complications, but late or subtler complications may escape recording.
View Article and Find Full Text PDFHead collisions in sport can result in catastrophic injuries to the cervical spine. Musculoskeletal modelling can help analyse the relationship between motion, external forces and internal loads that lead to injury. However, impact specific musculoskeletal models are lacking as current viscoelastic values used to describe cervical spine joint dynamics have been obtained from unrepresentative quasi-static or static experiments.
View Article and Find Full Text PDFThe dynamics of body center of mass (BCoM) 3D trajectory during locomotion is crucial to the mechanical understanding of the different gaits. Forward Dynamics (FD) obtains BCoM motion from ground reaction forces while Inverse Dynamics (ID) estimates BCoM position and speed from motion capture of body segments. These two techniques are widely used by the literature on the estimation of BCoM.
View Article and Find Full Text PDF