The sympathetic nervous system controls bodily functions including vascular tone, cardiac rhythm, and the "fight-or-flight response". Sympathetic chain ganglia develop in parallel with preganglionic motor nerves extending from the neural tube, raising the question of whether axon targeting contributes to sympathetic chain formation. Using nerve-selective genetic ablations and lineage tracing in mouse, we reveal that motor nerve-associated Schwann cell precursors (SCPs) contribute sympathetic neurons and satellite glia after the initial seeding of sympathetic ganglia by neural crest.
View Article and Find Full Text PDFMotor neuron (MN) demise is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Post-transcriptional gene regulation can control RNA's fate, and defects in RNA processing are critical determinants of MN degeneration. N-methyladenosine (mA) is a post-transcriptional RNA modification that controls diverse aspects of RNA metabolism.
View Article and Find Full Text PDFOrgan injury stimulates the formation of new capillaries to restore blood supply raising questions about the potential contribution of neoangiogenic vessel architecture to the healing process. Using single-cell mapping, we resolved the properties of endothelial cells that organize a polarized scaffold at the repair site of lesioned peripheral nerves. Transient reactivation of an embryonic guidance program is required to orient neovessels across the wound.
View Article and Find Full Text PDFHow the vascular and neural compartment cooperate to achieve such a complex and highly specialized structure as the central nervous system is still unclear. Here, we reveal a crosstalk between motor neurons (MNs) and endothelial cells (ECs), necessary for the coordinated development of MNs. By analyzing cell-to-cell interaction profiles of the mouse developing spinal cord, we uncovered semaphorin 3C (Sema3C) and PlexinD1 as a communication axis between MNs and ECs.
View Article and Find Full Text PDFThe nervous system requires metabolites and oxygen supplied by the neurovascular network, but this necessitates close apposition of neurons and endothelial cells. We find motor neurons attract vessels with long-range VEGF signaling, but endothelial cells in the axonal pathway are an obstacle for establishing connections with muscles. It is unclear how this paradoxical interference from heterotypic neurovascular contacts is averted.
View Article and Find Full Text PDFDisruption of homeostatic microRNA (miRNA) expression levels is known to cause human neuropathology. However, the gene regulatory and phenotypic effects of altering a miRNA's in vivo abundance (rather than its binary gain or loss) are not well understood. By genetic combination, we generated an allelic series of mice expressing varying levels of miR-218, a motor neuron-selective gene regulator associated with motor neuron disease.
View Article and Find Full Text PDFThe rich functional diversity of the nervous system is founded in the specific connectivity of the underlying neural circuitry. Neurons are often preprogrammed to respond to multiple axon guidance signals because they use sequential guideposts along their pathways, but this necessitates a strict spatiotemporal regulation of intracellular signaling to ensure the cues are detected in the correct order. We performed a mouse mutagenesis screen and identified the Rho GTPase antagonist p190RhoGAP as a critical regulator of motor axon guidance.
View Article and Find Full Text PDFAfter spinal cord injury (SCI), neutrophil elastase (NE) released at injury site disrupts vascular endothelium integrity and stabilization. Angiopoietins (ANGPTs) are vascular growth factors that play an important role in vascular stabilization. We hypothesized that neutrophil elastase is one of the key determinants of vascular endothelium disruption/destabilization and affects angiopoietins expression after spinal cord injury.
View Article and Find Full Text PDFMotor neurons of the spinal cord are responsible for the assembly of neuromuscular connections indispensable for basic locomotion and skilled movements. A precise spatial relationship exists between the position of motor neuron cell bodies in the spinal cord and the course of their axonal projections to peripheral muscle targets. Motor neuron innervation of the vertebrate limb is a prime example of this topographic organization and by virtue of its accessibility and predictability has provided access to fundamental principles of motor system development and neuronal guidance.
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
October 2017
Background: () gene has been recently identified as a causative gene of amyotrophic lateral sclerosis (ALS).
Methods: We sequenced the gene in a cohort of 154 Italian patients with ALS with unclear genetic aetiology. We subsequently assessed the pathogenic potential of novel identified variants using functional in vitro studies: expression, targeting and activity were evaluated in patient-derived fibroblasts and in cells transfected with mutated- plasmids.
Dysfunction of microRNA (miRNA) metabolism is thought to underlie diseases affecting motoneurons. One miRNA, miR-218, is abundantly and selectively expressed by developing and mature motoneurons. Here we show that mutant mice lacking miR-218 die neonatally and exhibit neuromuscular junction defects, motoneuron hyperexcitability, and progressive motoneuron cell loss, all of which are hallmarks of motoneuron diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy.
View Article and Find Full Text PDFIn gnathostome vertebrates, including fish, birds and mammals, peripheral nerves link nervous system, body and immediate environment by integrating efferent pathways controlling movement apparatus or organ function and afferent pathways underlying somatosensation. Several lines of evidence suggest that peripheral nerve assembly involves instructive interactions between efferent and afferent axon types, but conflicting findings challenge this view. Using genetic modeling in zebrafish, chick and mouse we uncover here a conserved hierarchy of axon type-dependent extension and selective fasciculation events that govern peripheral nerve assembly, which recapitulates the successive phylogenetic emergence of peripheral axon types and circuits in the vertebrate lineage.
View Article and Find Full Text PDFEmbryonic stem (ES) cells are derived from blastocyst-stage embryos and are thought to be functionally equivalent to the inner cell mass, which lacks the ability to produce all extraembryonic tissues. Here we identify a rare transient cell population within mouse ES and induced pluripotent stem (iPS) cell cultures that expresses high levels of transcripts found in two-cell (2C) embryos in which the blastomeres are totipotent. We genetically tagged these 2C-like ES cells and show that they lack the inner cell mass pluripotency proteins Oct4 (also known as Pou5f1), Sox2 and Nanog, and have acquired the ability to contribute to both embryonic and extraembryonic tissues.
View Article and Find Full Text PDFGrowing axons encounter multiple guidance cues, but it is unclear how separate signals are resolved and integrated into coherent instructions for growth cone navigation. We report that glycosylphosphatidylinositol (GPI)-anchored ephrin-As function as "reverse" signaling receptors for motor axons when contacted by transmembrane EphAs present in the dorsal limb. Ephrin-A receptors are thought to depend on transmembrane coreceptors for transmitting signals intracellularly.
View Article and Find Full Text PDFSynapsins are synaptic vesicle (SV)-associated proteins that regulate synaptic transmission and neuronal differentiation. At early stages, Syn I and II phosphorylation at Ser9 by cAMP-dependent protein kinase (PKA) and Ca(2+)/calmodulin-dependent protein kinase I/IV modulates axon elongation and SV-precursor dynamics. We evaluated the requirement of Syn I for synapse formation by siRNA-mediated knockdown as well as by overexpression of either its wild-type (WT) form or its phosphorylation mutants.
View Article and Find Full Text PDFThe Alzheimer's disease-linked gene presenilin is required for intramembrane proteolysis of amyloid-β precursor protein, contributing to the pathogenesis of neurodegeneration that is characterized by loss of neuronal connections, but the role of Presenilin in establishing neuronal connections is less clear. Through a forward genetic screen in mice for recessive genes affecting motor neurons, we identified the Columbus allele, which disrupts motor axon projections from the spinal cord. We mapped this mutation to the Presenilin-1 gene.
View Article and Find Full Text PDFMotor neurons are functionally related, but represent a diverse collection of cells that show strict preferences for specific axon pathways during embryonic development. In this article, we describe the ligands and receptors that guide motor axons as they extend toward their peripheral muscle targets. Motor neurons share similar guidance molecules with many other neuronal types, thus one challenge in the field of axon guidance has been to understand how the vast complexity of brain connections can be established with a relatively small number of factors.
View Article and Find Full Text PDFThe synapsins, the first identified synaptic vesicle-specific proteins, are phosphorylated on multiple sites by a number of protein kinases and are involved in neurite outgrowth and synapse formation as well as in synaptic transmission. In mammals, the synapsin family consists of at least 10 isoforms encoded by 3 distinct genes and composed by a mosaic of conserved and variable domains. The synapsins are highly conserved evolutionarily, and orthologues have been found in invertebrates and lower vertebrates.
View Article and Find Full Text PDFThe Arx transcription factor is expressed in the developing ventral telencephalon and subsets of its derivatives. Mutation of human ARX ortholog causes neurological disorders including epilepsy, lissencephaly, and mental retardation. We have isolated the mouse Arx endogenous enhancer modules that control its tightly compartmentalized forebrain expression.
View Article and Find Full Text PDFExecution of motor behaviors relies on circuitries effectively integrating immediate sensory feedback to efferent pathways controlling muscle activity. It remains unclear how, during neuromuscular circuit assembly, sensory and motor projections become incorporated into tightly coordinated, yet functionally separate pathways. We report that, within axial nerves, establishment of discrete afferent and efferent pathways depends on coordinate signaling between coextending sensory and motor projections.
View Article and Find Full Text PDFImproved and modular tools are needed for the neuroanatomical dissection of CNS axonal tracts, and to study the cell-intrinsic and cell-extrinsic cues that govern their assembly and plasticity. Here we describe a general purpose transgenic tracer that can be used to visualize axonal tracts and synaptic terminals in any region of the embryonic neural tube or postnatal CNS, on any wild type or mutant genetic background. The construct permits CRE-inducible expression of a dicistronic axonal marker encoding two surface reporter proteins: a farnesylated GFP and the human Placental Alkaline Phosphatase (PLAP).
View Article and Find Full Text PDFBiogenesis and recycling of synaptic vesicles are accompanied by sorting processes that preserve the molecular composition of the compartments involved. In the present study, we have addressed the targeting of synaptobrevin 2/VAMP2 (vesicle-associated membrane protein 2), a critical component of the synaptic vesicle--fusion machinery, in a heterotypic context where its sorting is not confounded by the presence of other neuron-specific molecules. Ectopically expressed synaptophysin I interacts with VAMP2 and alters its default surface targeting to a prominent vesicular distribution, with no effect on the targeting of other membrane proteins.
View Article and Find Full Text PDF