Malaria remains a global health problem causing more than 400,000 deaths annually. parasites, the causative agents of malaria, replicate asexually in red blood cells (RBCs) of their vertebrate host, while a subset differentiates into sexual stages (gametocytes) for mosquito transmission. Parasite replication and gametocyte maturation in the erythropoietic niches of the bone marrow and spleen contribute to pathogenesis and drive transmission, but the mechanisms underlying this organ enrichment remain unknown.
View Article and Find Full Text PDFis the major cause of human malaria in the Americas. How infection can lead to poor clinical outcomes, despite low peripheral parasitaemia, remains a matter of intense debate. Estimation of total biomass based on circulating markers indicates existence of a predominant parasite population outside of circulation.
View Article and Find Full Text PDFDNA replication is needed to duplicate a cell's genome in S phase and segregate it during cell division. Previous work in detected DNA replication initiation at just a single region in each chromosome, an organisation predicted to be insufficient for complete genome duplication within S phase. Here, we show that acetylated histone H3 (AcH3), base J and a kinetochore factor co-localise in each chromosome at only a single locus, which corresponds with previously mapped DNA replication initiation regions and is demarcated by localised G/T skew and G4 patterns.
View Article and Find Full Text PDFHomologous recombination (HR) has an intimate relationship with genome replication, both during repair of DNA lesions that might prevent DNA synthesis and in tackling stalls to the replication fork. Recent studies led us to ask if HR might have a more central role in replicating the genome of Leishmania, a eukaryotic parasite. Conflicting evidence has emerged regarding whether or not HR genes are essential, and genome-wide mapping has provided evidence for an unorthodox organisation of DNA replication initiation sites, termed origins.
View Article and Find Full Text PDFNext-generation sequencing is enabling molecularly guided therapy for many cancer types, yet failure rates remain relatively high in pancreatic cancer (PC). The aim of this study is to investigate the feasibility of genomic profiling using endoscopic ultrasound (EUS) biopsy samples to facilitate personalised therapy for PC. Ninty-five patients underwent additional research biopsies at the time of diagnostic EUS.
View Article and Find Full Text PDFNucleosomes are the basic unit of chromatin that help the packaging of genetic material while controlling access to the genetic information. The underlying DNA sequence, together with transcription-associated proteins and chromatin remodelling complexes, are important factors that influence the organization of nucleosomes. Here, we show that the naturally occurring DNA modification, 5-formylcytosine (5fC) is linked to tissue-specific nucleosome organization.
View Article and Find Full Text PDFControl of DNA methylation level is critical for gene regulation, and the factors that govern hypomethylation at CpG islands (CGIs) are still being uncovered. Here, we provide evidence that G-quadruplex (G4) DNA secondary structures are genomic features that influence methylation at CGIs. We show that the presence of G4 structure is tightly associated with CGI hypomethylation in the human genome.
View Article and Find Full Text PDF5-hydroxymethyluracil (5hmU) is formed through oxidation of thymine both enzymatically and non-enzymatically in various biological systems. Although 5hmU has been reported to affect biological processes such as protein-DNA interactions, the consequences of 5hmU formation in genomes have not been yet fully explored. Herein, we report a method to sequence 5hmU at single-base resolution.
View Article and Find Full Text PDFAberrant genetic and epigenetic variations drive malignant transformation and are hallmarks of cancer. Using PCR-free sample preparation we achieved the first in-depth whole genome (hydroxyl)-methylcytosine, single-base-resolution maps from a glioblastoma tumour/margin sample of a patient. Our data provide new insights into how genetic and epigenetic variations are interrelated.
View Article and Find Full Text PDFBackground: 5-Hydroxymethyluracil (5hmU) is a thymine base modification found in the genomes of a diverse range of organisms. To explore the functional importance of 5hmU, we develop a method for the genome-wide mapping of 5hmU-modified loci based on a chemical tagging strategy for the hydroxymethyl group.
Results: We apply the method to generate genome-wide maps of 5hmU in the parasitic protozoan Leishmania sp.
Summary: Current genome browsers are designed to work via graphical user interfaces (GUIs), which, however intuitive, are not amenable to operate within console terminals and therefore are difficult to streamline or integrate in scripts. To circumvent these limitations, ASCIIGenome runs exclusively via command line interface to display genomic data directly in a terminal window. By following the same philosophy of UNIX tools, ASCIIGenome aims to be easily integrated with the command line, including batch processing of data, and therefore enables an effective exploration of the data.
View Article and Find Full Text PDFG-quadruplex (G4) structural motifs have been linked to transcription, replication and genome instability and are implicated in cancer and other diseases. However, it is crucial to demonstrate the bona fide formation of G4 structures within an endogenous chromatin context. Herein we address this through the development of G4 ChIP-seq, an antibody-based G4 chromatin immunoprecipitation and high-throughput sequencing approach.
View Article and Find Full Text PDFBackground: Genome-wide methylation of cytosine can be modulated in the presence of TET and thymine DNA glycosylase (TDG) enzymes. TET is able to oxidise 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). TDG can excise the oxidative products 5fC and 5caC, initiating base excision repair.
View Article and Find Full Text PDFBisulfite sequencing is a valuable tool for mapping the position of 5-methylcytosine in the genome at single base resolution. However, the associated chemical treatment causes strand scission, which depletes the number of sequenceable DNA fragments in a library and thus necessitates PCR amplification. The AT-rich nature of the library generated from bisulfite treatment adversely affects this amplification, resulting in the introduction of major biases that can confound methylation analysis.
View Article and Find Full Text PDFBackground: The FANTOM5 consortium used Cap Analysis of Gene Expression (CAGE) tag sequencing to produce a comprehensive atlas of promoters and enhancers within the human and mouse genomes. We reasoned that the mapping of these regulatory elements to the pig genome could provide useful annotation and evidence to support assignment of orthology.
Results: For human transcription start sites (TSS) associated with annotated human-mouse orthologs, 17% mapped to the pig genome but not to the mouse, 10% mapped only to the mouse, and 55% mapped to both pig and mouse.
Background: The Forkhead (FKH) transcription factor FOXM1 is a key regulator of the cell cycle and is overexpressed in most types of cancer. FOXM1, similar to other FKH factors, binds to a canonical FKH motif in vitro. However, genome-wide mapping studies in different cell lines have shown a lack of enrichment of the FKH motif, suggesting an alternative mode of chromatin recruitment.
View Article and Find Full Text PDFThe Infinium 450K Methylation array is an established tool for measuring methylation. However, the bisulfite (BS) reaction commonly used with the 450K array cannot distinguish between 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). The oxidative-bisulfite assay disambiguates 5mC and 5hmC.
View Article and Find Full Text PDFThe modified base 5-formylcytosine (5fC) was recently identified in mammalian DNA and might be considered to be the 'seventh' base of the genome. This nucleotide has been implicated in active demethylation mediated by the base excision repair enzyme thymine DNA glycosylase. Genomics and proteomics studies have suggested an additional role for 5fC in transcription regulation through chromatin remodeling.
View Article and Find Full Text PDFRecently, the cytosine modifications 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) were found to exist in the genomic deoxyribonucleic acid (DNA) of a wide range of mammalian cell types. It is now important to understand their role in normal biological function and disease. Here we introduce reduced bisulfite sequencing (redBS-Seq), a quantitative method to decode 5fC in DNA at single-base resolution, based on a selective chemical reduction of 5fC to 5hmC followed by bisulfite treatment.
View Article and Find Full Text PDFTo uncover the function of and interplay between the mammalian cytosine modifications 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), new techniques and advances in current technology are needed. To this end, we have developed oxidative bisulfite sequencing (oxBS-seq), which can quantitatively locate 5mC and 5hmC marks at single-base resolution in genomic DNA. In bisulfite sequencing (BS-seq), both 5mC and 5hmC are read as cytosines and thus cannot be discriminated; however, in oxBS-seq, specific oxidation of 5hmC to 5-formylcytosine (5fC) and conversion of the newly formed 5fC to uracil (under bisulfite conditions) means that 5hmC can be discriminated from 5mC.
View Article and Find Full Text PDFBackground: The draft genome of the domestic pig (Sus scrofa) has recently been published permitting refined analysis of the transcriptome. Pig breeds have been reported to differ in their resistance to infectious disease. In this study we examine whether there are corresponding differences in gene expression in innate immune cells
Results: We demonstrate that macrophages can be harvested from three different compartments of the pig (lungs, blood and bone-marrow), cryopreserved and subsequently recovered and differentiated in CSF-1.
Background: The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems.
View Article and Find Full Text PDFHuman and mouse monocyte can be divided into two different subpopulations based on surface marker expression: CD14/16 and Ly6C/CX3CR1, respectively. Monocyte subpopulations in the pig were identified based on reciprocal expression of CD14 and the scavenger receptor CD163. The two populations, CD14(hi)-CD163(low) and CD14(low)-CD163(hi), show approximately equal abundance in the steady-state.
View Article and Find Full Text PDF