Publications by authors named "Dario Ballarini"

The realization of efficient optical devices depends on the ability to harness strong nonlinearities, which are challenging to achieve with standard photonic systems. Exciton-polaritons formed in hybrid organic-inorganic perovskites offer a promising alternative, exhibiting strong interactions at room temperature (RT). Despite recent demonstrations showcasing a robust nonlinear response, further progress is hindered by an incomplete understanding of the microscopic mechanisms governing polariton interactions in perovskite-based strongly coupled systems.

View Article and Find Full Text PDF

Room temperature (RT) polariton condensate holds exceptional promise for revolutionizing various fields of science and technology, encompassing optoelectronics devices to quantum information processing. Using perovskite materials, like all-inorganic cesium lead bromide (CsPbBr) single crystal, provides additional advantages, such as ease of synthesis, cost-effectiveness, and compatibility with existing semiconductor technologies. In this work, the formation of whispering gallery modes (WGM) in CsPbBr single crystals with controlled geometry is shown, synthesized using a low-cost and efficient capillary bridge method.

View Article and Find Full Text PDF

Spectra of low-lying elementary excitations are critical to characterize properties of bosonic quantum fluids. Usually these spectra are difficult to observe, due to low occupation of non-condensate states compared to the ground state. Recently, low-threshold Bose-Einstein condensation was realised in a symmetry-protected bound state in the continuum, at a saddle point, thanks to coupling of this electromagnetic resonance to semiconductor excitons.

View Article and Find Full Text PDF

Exciton-polaritons derived from the strong light-matter interaction of an optical bound state in the continuum with an excitonic resonance can inherit an ultralong radiative lifetime and significant nonlinearities, but their realization in two-dimensional semiconductors remains challenging at room temperature. Here we show strong light-matter interaction enhancement and large exciton-polariton nonlinearities at room temperature by coupling monolayer tungsten disulfide excitons to a topologically protected bound state in the continuum moulded by a one-dimensional photonic crystal, and optimizing for the electric-field strength at the monolayer position through Bloch surface wave confinement. By a structured optimization approach, the coupling with the active material is maximized here in a fully open architecture, allowing to achieve a 100 meV photonic bandgap with the bound state in the continuum in a local energy minimum and a Rabi splitting of 70 meV, which results in very high cooperativity.

View Article and Find Full Text PDF

Rhenium disulfide belongs to group VII transition metal dichalcogenides (TMDs) with attractive properties such as exceptionally high refractive index and remarkable oscillator strength, large in-plane birefringence, and good chemical stability. Unlike most other TMDs, the peculiar optical properties of rhenium disulfide persist from bulk to the monolayer, making this material potentially suitable for applications in optical devices. In this work, we demonstrate with unprecedented clarity the strong coupling between cavity modes and excited states, which results in a strong polariton interaction, showing the interest of these materials as a solid-state counterpart of Rydberg atomic systems.

View Article and Find Full Text PDF

The field of spinoptronics is underpinned by good control over photonic spin-orbit coupling in devices that have strong optical nonlinearities. Such devices might hold the key to a new era of optoelectronics where momentum and polarization degrees of freedom of light are interwoven and interfaced with electronics. However, manipulating photons through electrical means is a daunting task given their charge neutrality.

View Article and Find Full Text PDF

Quantum vortices are the analogue of classical vortices in optics, Bose-Einstein condensates, superfluids and superconductors, where they provide the elementary mode of rotation and orbital angular momentum. While they mediate important pair interactions and phase transitions in nonlinear fluids, their linear dynamics is useful for the shaping of complex light, as well as for topological entities in multi-component systems, such as full Bloch beams. Here, setting a quantum vortex into directional motion in an open-dissipative fluid of microcavity polaritons, we observe the self-splitting of the packet, leading to the trembling movement of its center of mass, whereas the vortex core undergoes ultrafast spiraling along diverging and converging circles, in a sub-picosecond precessing fashion.

View Article and Find Full Text PDF

The engineering of the energy dispersion of polaritons in microcavities through nanofabrication or through the exploitation of intrinsic material and cavity anisotropies has demonstrated many intriguing effects related to topology and emergent gauge fields such as the anomalous quantum Hall and Rashba effects. Here we show how we can obtain different Berry curvature distributions of polariton bands in a strongly coupled organic-inorganic two-dimensional perovskite single-crystal microcavity. The spatial anisotropy of the perovskite crystal combined with photonic spin-orbit coupling produce two Hamilton diabolical points in the dispersion.

View Article and Find Full Text PDF

If a quantum fluid is driven with enough angular momentum, at equilibrium the ground state of the system is given by a lattice of quantized vortices whose density is prescribed by the quantization of circulation. We report on the first experimental study of the Feynman-Onsager relation in a nonequilibrium polariton fluid, free to expand and rotate. Upon initially imprinting a lattice of vortices in the quantum fluid, we track the vortex core positions on picosecond timescales.

View Article and Find Full Text PDF

In ultrafast multimode lasers, mode locking is implemented by means of saturable absorbers or modulators, allowing for very short pulses. This occurs because of nonlinear interactions of modes with well equispaced frequencies. Though theory predicts that, in the absence of any device, mode locking would occur in random lasers, this has never been demonstrated so far.

View Article and Find Full Text PDF

Hybrid organic-inorganic perovskites are very promising semiconductors for many optoelectronic applications, although their extensive use is limited by their poor stability under environmental conditions. In this work, we synthesize two-dimensional perovskite single crystals and investigate their optical and structural evolution under continuous light irradiation. We found that the hydrophobic nature of the fluorinated component, together with the absence of grain boundary defects, lead to improved material stability thanks to the creation of a robust barrier that preserve the crystalline structure, hindering photo-degradation processes usually promoted by oxygen and moisture.

View Article and Find Full Text PDF

The rapid development of artificial neural networks and applied artificial intelligence has led to many applications. However, current software implementation of neural networks is severely limited in terms of performance and energy efficiency. It is believed that further progress requires the development of neuromorphic systems, in which hardware directly mimics the neuronal network structure of a human brain.

View Article and Find Full Text PDF

Semiconductor devices are strong competitors in the race for the development of quantum computational systems. In this work, we interface two semiconductor building blocks of different dimensionalities with complementary properties: (1) a quantum dot hosting a single exciton and acting as a nearly ideal single-photon emitter and (2) a quantum well in a 2D microcavity sustaining polaritons, which are known for their strong interactions and unique hydrodynamic properties, including ultrafast real-time monitoring of their propagation and phase mapping. In the present experiment, we can thus observe how the injected single particles propagate and evolve inside the microcavity, giving rise to hydrodynamic features typical of macroscopic systems despite their genuine intrinsic quantum nature.

View Article and Find Full Text PDF

Machine learning software applications are ubiquitous in many fields of science and society for their outstanding capability to solve computationally vast problems like the recognition of patterns and regularities in big data sets. In spite of these impressive achievements, such processors are still based on the so-called von Neumann architecture, which is a bottleneck for faster and power-efficient neuromorphic computation. Therefore, one of the main goals of research is to conceive physical realizations of artificial neural networks capable of performing fully parallel and ultrafast operations.

View Article and Find Full Text PDF

Quantum fluids of light are realized in semiconductor microcavities using exciton-polaritons, solid-state quasi-particles with a light mass and sizeable interactions. Here, we use the microscopic analogue of oceanographic techniques to measure the excitation spectrum of a thermalised polariton condensate. Increasing the fluid density, we demonstrate the transition from a free-particle parabolic dispersion to a linear, sound-like Goldstone mode characteristic of superfluids at equilibrium.

View Article and Find Full Text PDF

The self-trapping of exciton-polariton condensates is demonstrated and explained by the formation of a new polaronlike state. Above the polariton lasing threshold, local variation of the lattice temperature provides the mechanism for an attractive interaction between polaritons. Because of this attraction, the condensate collapses into a small bright spot.

View Article and Find Full Text PDF

Sources of single photons are a fundamental brick in the development of quantum information technologies. Great efforts have been made so far in the realization of reliable, highly efficient, and on demand quantum sources that could show an easy integration with quantum devices. This has recently culminated in the use of solid state quantum dots as promising candidates for future sources of quantum technologies.

View Article and Find Full Text PDF

Atomically thin transition metal dichalcogenides (TMDs) possess a number of properties that make them attractive for realizing room-temperature polariton devices. An ideal platform for manipulating polariton fluids within monolayer TMDs is that of Bloch surface waves, which confine the electric field to a small volume near the surface of a dielectric mirror. Here we demonstrate that monolayer tungsten disulfide can sustain Bloch surface wave polaritons (BSWPs) with a Rabi splitting of 43 meV and propagation lengths reaching 33 μm.

View Article and Find Full Text PDF

Polaritons are quasi-particles that originate from the coupling of light with matter and that demonstrate quantum phenomena at the many-particle mesoscopic level, such as Bose-Einstein condensation and superfluidity. A highly sought and long-time missing feature of polaritons is a genuine quantum manifestation of their dynamics at the single-particle level. Although they are conceptually perceived as entangled states and theoretical proposals abound for an explicit manifestation of their single-particle properties, so far their behavior has remained fully accounted for by classical and mean-field theories.

View Article and Find Full Text PDF

Quantum vortices, the quantized version of classical vortices, play a prominent role in superfluid and superconductor phase transitions. However, their exploration at a particle level in open quantum systems has gained considerable attention only recently. Here we study vortex pair interactions in a resonant polariton fluid created in a solid-state microcavity.

View Article and Find Full Text PDF

In this work, we experimentally demonstrate for the first time the spontaneous generation of two-dimensional exciton-polariton X-waves. X-waves belong to the family of localized packets that can sustain their shape without spreading, even in the linear regime. This allows the wavepacket to maintain its shape and size for very low densities and very long times compared to soliton waves, which always necessitate a nonlinearity to compensate the diffusion.

View Article and Find Full Text PDF

The Berezinskii-Kosterlitz-Thouless phase transition from a disordered to a quasi-ordered state, mediated by the proliferation of topological defects in two dimensions, governs seemingly remote physical systems ranging from liquid helium, ultracold atoms and superconducting thin films to ensembles of spins. Here we observe such a transition in a short-lived gas of exciton-polaritons, bosonic light-matter particles in semiconductor microcavities. The observed quasi-ordered phase, characteristic for an equilibrium two-dimensional bosonic gas, with a decay of coherence in both spatial and temporal domains with the same algebraic exponent, is reproduced with numerical solutions of stochastic dynamics, proving that the mechanism of pairing of the topological defects (vortices) is responsible for the transition to the algebraic order.

View Article and Find Full Text PDF

We report a record-size, two-dimensional polariton condensate of a fraction of a millimeter radius free from the presence of an exciton reservoir. This macroscopically occupied state is formed by the ballistically expanding polariton flow that relaxes and condenses over a large area outside of the excitation spot. The density of this trap-free condensate is <1  polariton/μm^{2}, reducing the phase noise induced by the interaction energy.

View Article and Find Full Text PDF

The strong coupling of an excitonic transition with an electromagnetic mode results in composite quasi-particles called exciton polaritons, which have been shown to combine the best properties of their individual components in semiconductor microcavities. However, the physics and applications of polariton flows in organic materials and at room temperature are still unexplored because of the poor photon confinement in such structures. Here, we demonstrate that polaritons formed by the hybridization of organic excitons with a Bloch surface wave are able to propagate for hundreds of microns showing remarkable third-order nonlinear interactions upon high injection density.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3fr0kjf1vh5b5a46frnrjhq8qs066s5i): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once