Purpose: Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects' sex and age through analysis of radiomics features from CT images of lumbar vertebrae, and define its generalizability across different scanners.
Materials And Methods: We annotated spherical volumes-of-interest (VOIs) in the center of the vertebral body for each lumbar vertebra in 233 subjects who had undergone lumbar CT for back pain on 3 different scanners, and we evaluated radiomics features from each VOI.