Mesocrystals are superstructures of crystallographically aligned nanoparticles and are a rapidly emerging class of crystalline materials displaying sophisticated morphologies and properties, beyond those originating from size and shape of nanoparticles alone. This study reports the first synthesis of CuN mesocrystals employing structure-directing agents with a subtle tuning of the reaction parameters. Detailed structural characterizations carried out with a combination of transmission electron microscopy techniques (HRTEM, HAADF-STEM-EXDS) reveal that CuN mesocrystals form by non-classical crystallization, and variations in their sizes and morphologies are traced back to distinct attachment scenarios of corresponding mesocrystal subunits.
View Article and Find Full Text PDFThere is an increasing demand for the development of a simple Si-based universal memory device at the nanoscale that operates at high frequencies. Spin-electronics (spintronics) can, in principle, increase the efficiency of devices and allow them to operate at high frequencies. A primary challenge for reducing the dimensions of spintronic devices is the requirement for high spin currents.
View Article and Find Full Text PDFThere is an increasing demand for realizing a simple Si based universal memory device working at ambient temperatures. In principle, nonvolatile magnetic memory can operate at low power consumption and high frequencies. However, in order to compete with existing memory technology, size reduction and simplification of the used material systems are essential.
View Article and Find Full Text PDFAlF3-based aerogels, a new class of inorganic aerogels, are prepared in a novel direct process that combines fluoride sol-gel synthesis with high temperature supercritical drying. The bulk structure of the solid products depends decisively on the applied solvent(s); very voluminous bulk aerogels are obtained only with MeOH that is used either alone or in combination with some other polar solvents. MeOH acts as a methoxylation agent; and formed methoxy (MeO) species are remarkably stable and deactivate the surface acidic sites.
View Article and Find Full Text PDFTiO2 has been considered as a promising anode material for lithium ion batteries. However, its poor rate capability originating from the intrinsically low lithium ion diffusivity and its poor electronic conductivity hampers putting such an application into practice. Both issues can be addressed by nanostructure engineering and conductive surface coating.
View Article and Find Full Text PDFAlignment of nanowires over a large area of flat and patterned substrates is a prerequisite to use their collective properties in devices such as gas sensors. In this work, uniform single-crystalline ultrathin W18 O49 nanowires with diameters less than 2 nm and aspect ratios larger than 100 have been synthesized, and, despite their flexibility, assembled into thin films with high orientational order over a macroscopic area by the Langmuir-Blodgett technique. Alignment of the tungsten oxide nanowires was also possible on top of sensor substrates equipped with electrodes.
View Article and Find Full Text PDF