Publications by authors named "Darine Abi-Haidar"

Nowadays, surgical removal remains the standard method to treat brain tumors. During surgery, the neurosurgeon may encounter difficulties to delimitate tumor boundaries and the infiltrating areas as they have a similar visual appearance to adjacent healthy zones. These infiltrating residuals increase the tumor recurrence risk, which decreases the patient's post-operation survival time.

View Article and Find Full Text PDF

Meningioma is the most common primary intracranial extra-axial tumor. Total surgical removal is the standard therapeutic method to treat this type of brain tumors. However, the risk of recurrence depends on the tumor grade and the extent of the resection including the infiltrated dura mater and, if necessary, the infiltrated bone.

View Article and Find Full Text PDF

We report the design and characterization of a two-photon fluorescence imaging miniature probe. This customized two-axis scanning probe is dedicated for intraoperative two-photon fluorescence imaging endomicroscopic use and is based on a micro-electro-mechanical system (MEMS) mirror with a high reflectivity plate and two-level-ladder double S-shaped electrothermal bimorph actuators. The fully assembled probe has a total outer diameter of 4 mm including all elements.

View Article and Find Full Text PDF

Red luminescent and superparamagnetic β-NaYEuF@γ-FeO nanoparticles, made of a 70 nm-sized β-NaYEuF single crystal core decorated by a 10 nm-thick polycrystalline and discontinuous γ-FeO shell, have been synthesized by the polyol process. Functionalized with citrate ligands they show a good colloidal stability in water making them valuable for dual magnetic resonance and optical imaging or image-guided therapy. They exhibit a relatively high transverse relaxivity r = 42.

View Article and Find Full Text PDF

Radiotherapy is one of the main treatments used to fight cancer. A major limitation of this modality is the lack of selectivity between cancerous and healthy tissues. One of the most promising strategies proposed in this last decade is the addition of nanoparticles with high-atomic number to enhance radiation effects in tumors.

View Article and Find Full Text PDF

The surgical outcome of brain tumor resection and needle biopsy is significantly correlated to the patient's prognosis. Brain tumor surgery is limited to resecting the solid portion of the tumor as current intraoperative imaging modalities are incapable of delineating infiltrative regions. For accurate delineation, in situ tissue interrogation at the submicron scale is warranted.

View Article and Find Full Text PDF

Among all the tumors of the central nervous system (CNS), glioma are the most deadly and the most malignant. Surgical resection is the standard therapeutic method to treat this type of brain cancer. But the diffusive character of these tumors create many problems for surgeons during the operation.

View Article and Find Full Text PDF

Polygonal-shaped about 75 nm sized and highly crystallized Eu-doped β-NaYF particles were directly prepared under mild conditions using the polyol process. A set of operating parameters were optimized for such a purpose. A conventional heating under reflux for 30 min of a mixture of Y(III) and Eu(III) acetate, ammonium fluoride, sodium hydroxide and oleic acid (OA) dissolved in ethyleneglycol offered a pertinent material processing route if a large excess of NHF and an enough amount of OA were used.

View Article and Find Full Text PDF

The primary line of therapy for high-grade brain tumor is surgical resection, however, identifying tumor margins in vivo remains a major challenge. Despite the progress in computer-assisted imaging techniques, biopsy analysis remains the standard diagnostic tool when it comes to delineating tumor margins. Our group aims to answer this challenge by exploiting optical imaging of endogenous fluorescence in order to provide a reliable and reproducible diagnosis close to neuropathology.

View Article and Find Full Text PDF

To complement a project toward label-free optical biopsy and enhanced resection which the overall goal is to develop a multimodal nonlinear endomicroscope, this multimodal approach aims to enhance the accuracy in classifying brain tissue into solid tumor, infiltration and normal tissue intraoperatively. Multiple optical measurements based on one- and two-photon spectral and lifetime autofluorescence, including second harmonic generation imaging, were acquired. As a prerequisite, studying the effect of the time of measurement postexcision on tissue's spectral/lifetime fluorescence properties was warranted, so spectral and lifetime fluorescences of fresh brain tissues were measured using a point-based linear endoscope.

View Article and Find Full Text PDF

Accurate intraoperative tumour margin assessment is a major challenge in neurooncology, where sparse tumours beyond the bulk tumour are left undetected under conventional resection. Non-linear optical imaging can diagnose tissue at the sub-micron level and provide functional label-free histopathology in vivo. For this reason, a non-linear endomicroscope is being developed to characterize brain tissue intraoperatively based on multiple endogenous optical contrasts such as spectrally- and temporally-resolved fluorescence.

View Article and Find Full Text PDF

Therapeutic substances bound to nanoparticles have been shown to dissociate following excitation by various external sources of energies or chemical disturbance, resulting in controllable and efficient antitumor activity. Bioconjugation is used to produce magnetosomes associated with Rhodamine B (RhB), whose fluorescence is partially quenched by the presence of iron oxide and becomes strongly enhanced when RhB dissociates from the magnetosomes under the application of an alternating magnetic field. This novel approach enables the release of a RhB model molecule while monitoring the mechanism by fluorescence.

View Article and Find Full Text PDF

In the framework of urologic oncology, mini-invasive procedures have increased in the last few decades particularly for urothelial carcinoma. One of the essential elements in the management of this disease is still the diagnosis, which strongly influences the choice of treatment. The histopathologic evaluation of the tumor grade is a keystone of diagnosis, and tumor characterization is not possible with just a macroscopic evaluation.

View Article and Find Full Text PDF

We report a method of fabrication of fluorescent magnetosomes, designated as MCR400, in which 400 μM of rhodamine B are introduced in the growth medium of AMB-1 magnetotactic bacteria and fluorescent magnetosomes are then extracted from these bacteria. These fluorescent magnetosomes behave differently from most fluorescent nanoprobes, which often lead to fluorescence losses over time due to photobleaching. Indeed, when MCR400 are heated to 30-90 °C, brought to an acidic pH, or exposed to radiations, we observed that their fluorescence intensity increased.

View Article and Find Full Text PDF

Delineating tumor margins as accurately as possible is of primordial importance in surgical oncology: extent of resection is associated with survival but respect of healthy surrounding tissue is necessary for preserved quality of life. The real-time analysis of the endogeneous fluorescence signal of brain tissues is a promising tool for defining margins of brain tumors. The present study aims to demonstrate the feasibility of multimodal optical analysis to discriminate fresh samples of gliomas, metastases and meningiomas from their appropriate controls.

View Article and Find Full Text PDF

Meningioma is the most frequent primary central nervous system tumor. The risk of recurrence and the prognosis are correlated with the extent of the resection that ideally encompasses the infiltrated dura mater and, if required, the infiltrated bone. No device can deliver real-time intraoperative histopathological information on the tumor environment to help the neurosurgeon to achieve a gross total removal.

View Article and Find Full Text PDF

Several endomicroscope prototypes for nonlinear optical imaging were developed in the last decade for in situ analysis of tissue with cellular resolution by using short infrared light pulses. Fourier-transform-limited pulses at the tissue site are necessary for optimal excitation of faint endogenous signals. However, obtaining these transform-limited short pulses remains a challenge, and previously proposed devices did not achieve an optimal pulse delivery.

View Article and Find Full Text PDF

Optical properties of fresh and frozen tissues of rat heart, kidney, brain, liver, and muscle were measured in the 450- to 700-nm range. The total reflectance and transmittance were measured using a well-calibrated integral sphere set-up. Absorption coefficient μa and reduced scattering coefficient μ's were derived from the experimental measurements using the inverse adding doubling technique.

View Article and Find Full Text PDF

Growing interest in optical instruments for biomedical applications has increased the use of optically calibrated phantoms. Often associated with tissue modeling, phantoms allow the characterization of optical devices for clinical purposes. Fluorescent gel phantoms have been developed, mimicking optical properties of healthy and tumorous brain tissues.

View Article and Find Full Text PDF

Several major lung pathologies are characterized by early modifications of the extracellular matrix (ECM) fibrillar collagen and elastin network. We report here the development of a nonlinear fiber-optic spectrometer, compatible with an endoscopic use, primarily intended for the recording of second-harmonic generation (SHG) signal of collagen and two-photon excited fluorescence (2PEF) of both collagen and elastin. Fiber dispersion is accurately compensated by the use of a specific grism-pair stretcher, allowing laser pulse temporal width around 70 fs and excitation wavelength tunability from 790 to 900 nm.

View Article and Find Full Text PDF

We present experiments and analyses of confocal reflectance and two-photon microscopy studies of zebra finch skull samples. The thin and hollow structure of these birds' skulls is quite translucent, which can allow in vivo transcranial two-photon imaging for brain activation monitoring. However, the skull structure is also quite complex, with high refractive index changes on a macroscopic scale.

View Article and Find Full Text PDF