Publications by authors named "Darina Gromyko"

The human protein N(α)-terminal acetyltransferase A complex (hNatA), composed of the catalytic hNaa10p (hArd1) and auxiliary hNaa15p (hNat1/NATH/Tubedown) subunits, was reported to be important for cell survival and growth of various types of cancer. However, little is known about the mechanisms mediating growth inhibition and apoptosis following loss of hNatA function. Here, we have screened 11 different thyroid cell lines for hNAA10 RNAi phenotypes and observed mostly growth inhibition, which was independent of TP53 functional status and developed by several different mechanisms involving (i) downregulation of cyclin D1, (ii) increase in p27/Kip1 and (iii) inactivation of Rb/E2F pathway.

View Article and Find Full Text PDF

DJ-1 was originally identified to be an oncogenic product, but has later been shown to be highly multifunctional. DJ-1 plays a role in oxidative stress response and transcriptional regulation, and loss of its function leads to an early onset of Parkinsonism. To further understand the mechanisms behind DJ-1's role in cell survival and death, we investigated alternations in endogenous DJ-1 protein-protein interaction in apoptotic cells exposed to the phosphatase inhibitor okadaic acid.

View Article and Find Full Text PDF

Protein Nalpha-terminal acetylation is one of the most common protein modifications in eukaryotic cells, occurring on approximately 80% of soluble human proteins. An increasing number of studies links Nalpha-terminal acetylation to cell differentiation, cell cycle, cell survival, and cancer. Thus, Nalpha-terminal acetylation is an essential modification for normal cell function in humans.

View Article and Find Full Text PDF

Background: Protein acetylation is among the most common protein modifications. The two major types are post-translational Nepsilon-lysine acetylation catalyzed by KATs (Lysine acetyltransferases, previously named HATs (histone acetyltransferases) and co-translational Nalpha-terminal acetylation catalyzed by NATs (N-terminal acetyltransferases). The major NAT complex in yeast, NatA, is composed of the catalytic subunit Naa10p (N alpha acetyltransferase 10 protein) (Ard1p) and the auxiliary subunit Naa15p (Nat1p).

View Article and Find Full Text PDF

Protein N(alpha)-terminal acetylation is one of the most common protein modifications in eukaryotic cells. In yeast, three major complexes, NatA, NatB, and NatC, catalyze nearly all N-terminal acetylation, acetylating specific subsets of protein N termini. In human cells, only the NatA and NatB complexes have been described.

View Article and Find Full Text PDF

Protein N(alpha)-terminal acetylation is a conserved and widespread protein modification in eukaryotes. Several studies have linked it to normal cell function and cancer development, but nevertheless, little is known about its biological function. In yeast, protein N(alpha)-terminal acetylation is performed by the N-acetyltransferase complexes NatA, NatB and NatC.

View Article and Find Full Text PDF

Hypoxia inducible factor-1 alpha (HIF-1 alpha) is a central component of the cellular responses to hypoxia. Hypoxic conditions result in stabilization of HIF-1 alpha and formation of the transcriptionally active HIF-1 complex. It was suggested that mammalian ARD1 acetylates HIF-1 alpha and thereby enhances HIF-1 alpha ubiquitination and degradation.

View Article and Find Full Text PDF

Protein acetylation is an important posttranslational modification regulating oncogenesis, apoptosis and cell cycle. NATH (N-acetyl transferase human) is overexpressed at the mRNA level in papillary thyroid carcinomas relative to non-neoplastic thyroid tissue. The NATH protein has recently been demonstrated to be the partner of hARD1 (human Arrest defective 1) and this complex acetylates the N-termini of proteins.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionq6tsfls3mlqg2gj4k2oudl5m5bh1dmvj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once