Publications by authors named "Darin Bloemberg"

Purpose: Brain metastases (BM) are mainly treated palliatively with an expected survival of less than 12 months after diagnosis. In many solid tumors, the human neural stem cell marker glycoprotein CD133 is a marker of a tumor-initiating cell population that contributes to therapy resistance, relapse, and metastasis.

Experimental Design: Here, we use a variant of our previously described CD133 binder to generate second-generation CD133-specific chimeric antigen receptor T cells (CAR-T) to demonstrate its specificity and efficacy against multiple patient-derived BM cell lines with variable CD133 antigen expression.

View Article and Find Full Text PDF

Bi-specific T-cell engager antibodies (BiTEs) are synthetic fusion molecules that combine multiple antibody-binding domains to induce active contact between T-cells and antigen expressing cells in the body. Blinatumomab, a CD19-CD3 BiTE is now a widely used therapy for relapsed B-cell malignancies, and similar BiTE therapeutics have shown promise for treating various other forms of cancer. The current process for new BiTE development is time consuming and costly, requiring characterization of the individual antigen binding domains, followed by bi-specific design, protein production, purification, and eventually functional screening.

View Article and Find Full Text PDF

Epidermal growth factor family receptor (EGFR) is commonly overexpressed in many solid tumors and an attractive target for chimeric antigen receptor (CAR)-T therapy, but as EGFR is also expressed at lower levels in healthy tissues a therapeutic strategy must balance antigenic responsiveness against the risk of on-target off-tumor toxicity. Herein, we identify several camelid single-domain antibodies (also known as nanobodies) that are effective EGFR targeting moieties for CARs (EGFR-sdCARs) with very strong reactivity to EGFR-high and EGFR-low target cells. As a strategy to attenuate their potent antigenic sensitivity, we performed progressive truncation of the human CD8 hinge commonly used as a spacer domain in many CAR constructs.

View Article and Find Full Text PDF
Article Synopsis
  • Human blood-brain barrier (BBB) models made from induced pluripotent stem cells (iPSCs) are crucial for testing new cell and gene therapies aimed at treating brain cancers like glioblastomas.
  • This study focused on evaluating how different CAR-T cell therapies target U87MG glioblastoma cells, specifically those expressing the mutated EGFRvIII protein, and how they affect BBB integrity.
  • Results showed that the CAR-T cells decreased the BBB's resistance and increased its permeability, with the CAR-F263 cells being notably more effective at killing glioblastoma cells than CAR-F269, despite both having similar abilities to cross the BBB.
View Article and Find Full Text PDF

Since observations that CRISPR nucleases function in mammalian cells, many strategies have been devised to adapt them for genetic engineering. Here, we investigated self-cutting and integrating CRISPR-Cas9 plasmids (SCIPs) as easy-to-use gene editing tools that insert themselves at CRISPR-guided locations. SCIPs demonstrated similar expression kinetics and gene disruption efficiency in mouse (EL4) and human (Jurkat) cells, with stable integration in 3-6% of transfected cells.

View Article and Find Full Text PDF

Mortality rates in patients diagnosed with central nervous system (CNS) tumors, originating in the brain or spinal cord, continue to remain high despite the advances in multimodal treatment regimens, including surgery, radiation, and chemotherapy. Recent success of adoptive cell transfer immunotherapy treatments using chimeric antigen receptor (CAR) engineered T cells against in chemotherapy resistant CD19 expressing B-cell lymphomas, has provided the foundation for investigating efficacy of CAR T immunotherapies in the context of brain tumor. Although significant efforts have been made in developing and translating the novel CAR T therapies for CNS tumors, including glioblastoma (GBM), researchers are yet to achieve a similar level of success as with liquid malignancies.

View Article and Find Full Text PDF

Due to the ever-expanding functions attributed to autophagy, there is widespread interest in understanding its contribution to human physiology; however, its specific cellular role as a stress-response mechanism is still poorly defined. To investigate autophagy's role in this regard, we repeatedly subjected cultured mouse myoblasts to two stresses with diverse impacts on autophagic flux: amino acid and serum withdrawal (Hank's balanced salt solution [HBSS]), which robustly induces autophagy, or low-level toxic stress (staurosporine, STS). We found that intermittent STS (int-STS) administration caused cell cycle arrest, development of enlarged and misshapen cells/nuclei, increased senescence-associated heterochromatic foci and senescence-associated β-galactosidase activity, and prevented myogenic differentiation.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) development involves extensive empirical characterization of antigen-binding domain (ABD)/CAR constructs for clinical suitability. Here, we present a cost-efficient and rapid method for evaluating CARs in human Jurkat T cells. Using a modular CAR plasmid, a highly efficient ABD cloning strategy, plasmid electroporation, short-term co-culture, and flow-cytometric detection of CD69, this assay (referred to as CAR-J) evaluates sensitivity and specificity for ABDs.

View Article and Find Full Text PDF

Apoptosis and autophagy are processes resulting from the integration of cellular stress and death signals. Their individual importance is highlighted by the lethality of various mouse models missing apoptosis or autophagy-related genes. In addition to their independent roles, significant overlap exists with respect to the signals that stimulate these processes as well as their effector consequences.

View Article and Find Full Text PDF

Macroautophagy/autophagy is a degradative process essential for various cellular processes. We previously demonstrated that autophagy-deficiency causes myoblast apoptosis and impairs myotube formation. In this study, we continued this work with particular emphasis on mitochondrial remodelling and stress/apoptotic signaling.

View Article and Find Full Text PDF

Lysophosphatidic acid acyltransferase (LPAAT) δ/acylglycerophosphate acyltransferase 4 is a mitochondrial enzyme and one of five homologues that catalyze the acyl-CoA-dependent synthesis of phosphatidic acid (PA) from lysophosphatidic acid. We studied skeletal muscle LPAATδ and found highest levels in soleus, a red oxidative fibre-type that is rich in mitochondria, and lower levels in extensor digitorum longus (EDL) (white glycolytic) and gastrocnemius (mixed fibre-type). Using Lpaatδ-deficient mice, we found no change in soleus or EDL mass, or in treadmill time-to-exhaustion compared to wildtype littermates.

View Article and Find Full Text PDF

We previously characterized LPAATδ/AGPAT4 as a mitochondrial lysophosphatidic acid acyltransferase that regulates brain levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol (PI). Here, we report that δ mice display impaired spatial learning and memory compared to wild-type littermates in the Morris water maze and our investigation of potential mechanisms associated with brain phospholipid changes. Marker protein immunoblotting suggested that the relative brain content of neurons, glia, and oligodendrocytes was unchanged.

View Article and Find Full Text PDF

Sarcolipin (SLN) and phospholamban (PLN) are two small proteins that regulate the sarco(endo)plasmic reticulum Ca2+-ATPase pumps. In a recent study, we discovered that Pln overexpression (PlnOE) in slow-twitch type I skeletal muscle fibers drastically impaired SERCA function and caused a centronuclear myopathy-like phenotype, severe muscle atrophy and weakness, and an 8 to 9-fold upregulation of SLN protein in the soleus muscles. Here, we sought to determine the physiological role of SLN upregulation, and based on its role as a SERCA inhibitor, we hypothesized that it would represent a maladaptive response that contributes to the SERCA dysfunction and the overall myopathy observed in the PlnOE mice.

View Article and Find Full Text PDF

Investigating cell death signaling using cell culture is commonly performed to examine the effects of novel pharmaceuticals or to further characterize discrete cellular signaling pathways. Here, we provide data regarding the cell death response to either cisplatin or A23187 in sub-confluent C2C12 cells, by utilizing several concentrations and incubation times for each chemical. These data include an assessment of the activation of the proteolytic enzymes caspase-3, caspase-8, caspase-9, calpain, and cathepsin B/L.

View Article and Find Full Text PDF

The C2C12 line of mouse myoblasts is a useful cell culture model in which to conduct in vitro analyses related to skeletal muscle. Here we present data regarding the autophagic response induced by two chemicals known to influence calcium release and contraction in skeletal muscles and C2C12 cells: acetylcholine and caffeine. More specifically, by concurrently administering acetylcholine or caffeine along with chloroquine to differentiated myotubes for various amounts of time and assessing the protein expression of LC3 and p62, we report data on the relative level of autophagic flux induced by these two calcium- and contraction-regulating chemicals.

View Article and Find Full Text PDF

The differentiation of skeletal muscle is commonly examined in cell culture using the C2C12 line of mouse skeletal myoblasts. This process shares many similarities with that which occurs during embryonic development, such as the transient activation of caspases. Here, we examined the effect of inhibiting mitochondrial fission, using mdivi-1, on the ability of C2C12 cells to terminally differentiate.

View Article and Find Full Text PDF

Skeletal muscle is extremely adaptable to a variety of metabolic challenges, as both traditional moderate-intensity endurance (ET) and high-intensity interval training (HIIT) increases oxidative potential in a coordinated manner. Although these responses have been clearly demonstrated in healthy individuals, it remains to be determined whether both produce similar responses in the context of hypertension, one of the most prevalent and costly diseases worldwide. Therefore, in the current study, we used the Dahl sodium-sensitive rat, a model of hypertension, to determine the molecular responses to 4 wk of either ET or HIIT in the red (RG) and white gastrocnemius (WG) muscles.

View Article and Find Full Text PDF

There has been re-emerging interest and significant work dedicated to investigating the metabolic effects of high intensity interval training (HIIT) in recent years. HIIT is considered to be a time efficient alternative to classic endurance training (ET) that elicits similar metabolic responses in skeletal muscle. However, there is a lack of information on the impact of HIIT on cardiac muscle in disease.

View Article and Find Full Text PDF

Apoptosis and autophagy are critical in normal skeletal muscle homeostasis; however, dysregulation can lead to muscle atrophy and dysfunction. Lipotoxicity and/or lipid accumulation may promote apoptosis, as well as directly or indirectly influence autophagic signaling. Therefore, the purpose of this study was to examine the effect of a 16-week high-fat diet on morphological, apoptotic, and autophagic indices in oxidative and glycolytic skeletal muscle of female rats.

View Article and Find Full Text PDF

Skeletal muscle differentiation requires activity of the apoptotic protease caspase-3. We attempted to identify the source of caspase activation in differentiating C2C12 skeletal myoblasts. In addition to caspase-3, caspase-2 was transiently activated during differentiation; however, no changes were observed in caspase-8 or -9 activity.

View Article and Find Full Text PDF

Sarcolipin (SLN) and phospholamban (PLN) inhibit the activity of sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs) by reducing their apparent affinity for Ca(2+). A ternary complex between SLN, PLN, and SERCAs results in super-inhibition of SERCA activity. Analysis of skeletal muscle homogenate has limited our current understanding of whether SLN and PLN regulate SERCA1a, SERCA2a, or both in skeletal muscle and whether SLN and PLN are co-expressed in skeletal muscle fibers.

View Article and Find Full Text PDF

We examined the influence of estrogen receptor-alpha (ERα) activation on estrogen-mediated regulation of heat shock proteins 70 (Hsp70) and 27 (Hsp27) in soleus. Ovariectomized rats received estrogen (EST), an ERα agonist (propyl pyrazole triol, PPT), both (EST+PPT), or a sham, and they served as either unexercised controls or were subjected to exercise by having to run downhill (17 m/min, -13.5° grade) for 90 min.

View Article and Find Full Text PDF

Skeletal muscle is a heterogeneous tissue comprised of fibers with different morphological, functional, and metabolic properties. Different muscles contain varying proportions of fiber types; therefore, accurate identification is important. A number of histochemical methods are used to determine muscle fiber type; however, these techniques have several disadvantages.

View Article and Find Full Text PDF

Sarcolipin (SLN) inhibits sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pumps. To evaluate the physiological significance of SLN in skeletal muscle, we compared muscle contractility and SERCA activity between Sln-null and wild-type mice. SLN protein expression in wild-type mice was abundant in soleus and red gastrocnemius (RG), low in extensor digitorum longus (EDL), and absent from white gastrocnemius (WG).

View Article and Find Full Text PDF

Apoptosis repressor with caspase recruitment domain (ARC) is a unique anti-apoptotic protein with a distinct tissue distribution. In addition, unlike most anti-apoptotic proteins which act on one pathway, ARC can inhibit apoptosis mediated by both the death-receptor and mitochondrial signaling pathways. In this study, we confirm previous reports showing high levels of ARC protein in rat heart and skeletal muscle, but demonstrate for the first time that ARC is also expressed in rat aorta.

View Article and Find Full Text PDF