Publications by authors named "Darieo Thankachan"

In this study, we have developed agar, a seaweed derived polysaccharide based green adsorbent for the removal of heavy metal ions (Pb, Cu, Cr and Cd) from multimetal solution. Porous cryogels of agar grafted with 3-aminopropyl triethoxysilane (APTES) were prepared by freeze-drying. The adsorption capacity and selectivity of the optimized APTES-agar cryogel for heavy metal ions (Cu, Cr, Pb, Cd) were investigated in multimetal solutions.

View Article and Find Full Text PDF

Stimuli-responsive polymeric micelles decorated with cancer biomarkers represent an optimal choice for drug delivery applications due to their ability to enhance therapeutic efficacy while mitigating adverse side effects. Accordingly, we synthesized a digoxin-modified novel multifunctional redox-responsive disulfide-linked poly(ethylene glycol--poly(lactic--glycolic acid) copolymer (Bi(Dig-PEG-PLGA)-S) for the targeted and controlled release of doxorubicin (DOX) in cancer cells. Within the micellar aggregate, the disulfide bond confers redox responsiveness, while the presence of the digoxin moiety acts as a targeting agent and chemosensitizer for DOX.

View Article and Find Full Text PDF

Biotin receptors are overexpressed in various cancer cell types, essential in tumor development, metabolism, and metastasis. Chemotherapeutic agents may be more effective and have fewer adverse effects if they specifically target the biotin receptors on cancer cells. Polymeric micelles (PMs) with nanoscale size via the EPR effect to accumulate near tumor tissue.

View Article and Find Full Text PDF

Because of sulfite's potential toxicity, there is a growing concern about detecting and controlling its concentration in foods, alcoholic beverages, pharmaceuticals, and environmental samples to ensure public health. A branched polyethyleneimine-coated silver nano-star (AgNS@PEI) surface-enhanced Raman scattering (SERS) substrate was synthesized in this study for use as a sensitive, simple, rapid, stable, and reproducible non-destructible sulfite detection analytical technique. The seed morphology of the nano-star was created by using hydroxylamine (NHOH) solution as a primary reducing agent, followed by a slow secondary reduction by trisodium citrate dihydrate (HOC(COONa)(CHCOONa) 2HO), resulting in the complete growth of the silver nano-star.

View Article and Find Full Text PDF

We fabricated a mussel-inspired hemocompatible polycarbonate membrane (PC) modified by the cross-linking of chondroitin sulfate and caffeic acid polymer using CA-CS via a Schiff base and Michael addition reaction and named it CA-CS-PC. The as-fabricated CA-CS-PC membrane shows excellent hydrophilicity with a water contact angle of 0° and a negative surface charge with a zeta potential of -32 mV. The antiadhesion property of the CA-CS-modified PC membrane was investigated by enzyme-linked immunosorbent assay (ELISA), using human plasma protein fibrinogen adsorption studies, and proved to have excellent antiadhesion properties, because of the lower fibrinogen adsorption.

View Article and Find Full Text PDF

Core-crosslinking of micelles (CCMs) appears to be a favorable strategy to enhance micellar stability and sustained release of the loaded drug. In this study, the DOX-conjugated pH-sensitive polymeric prodrug Methoxy Poly (ethylene oxide)-b-Poly (Aspartate-Hydrazide) (mPEG-P [Asp-(Hyd-DOX)] was created using ring-opening polymerization. To further enhance the micellar system, 3,3'-diselanediyldipropanoic acid (DSeDPA) was applied to link the hydrophobic segment via click reaction to form pH/redox-responsive CCMs.

View Article and Find Full Text PDF

Covalent organic polymer nanosheets (COPNs) endowed with porous networks and large surface areas in their structures offer great advantages over other materials in addressing environmental problems. In this study, fluorine-free superhydrophobic COPNs were designed and applied to selective dye absorption. Notably, COPNs selectively adsorb dyes with a high hydrophobic index (HI) and reject low HI dyes with maximum adsorption capacities of 361 and 263 mg/g for crystal violet and methylene blue, respectively.

View Article and Find Full Text PDF

In humans, excessive bleeding during civilian accidents, and surgery account for 40% of the mortality worldwide. Hence, the development of biocompatible hemostatic materials useful for rapid hemorrhage control has become a fundamental research problem in the biomedicine community. In this study, we prepared biocompatible gelatin-tannic acid-κ-carrageenan (GTC) microparticles using a facile Tween 80 stabilized water-in-oil (W/O) emulsion method for rapid hemostasis.

View Article and Find Full Text PDF