Publications by authors named "Darian Young"

Exposure to persistent organic pollutants (POPs), including organochlorine (OC) pesticide POPs, has been associated with the increased prevalence of obesity and type 2 diabetes. However, the underlying mechanisms through which exposure to these compounds may promote obesity and metabolic dysfunction remain an area of active investigation. To this end, the concentration dependent effects of an environmentally relevant mixture of OC pesticide POPs on adipocyte function was explored utilizing a translationally relevant immortalized human subcutaneous preadipocyte/adipocyte model.

View Article and Find Full Text PDF

The overall prevalence of metabolic diseases such as type 2 diabetes (T2D) and associated co-morbidities have increased at an alarming rate in the United States and worldwide. There is a growing body of epidemiological evidence implicating exposure to persistent organic pollutants (POPs), including legacy organochlorine (OC) pesticides and their bioaccumulative metabolites, in the pathogenesis of metabolic diseases. Therefore, the goal of the present study was to determine if exposure to trans-nonachlor, a bioaccumulative OC pesticide contaminant, in concert with high fat diet intake induced metabolic dysfunction.

View Article and Find Full Text PDF

The role of macrophages in the innate immune response cannot be underscored however recent studies have demonstrated that both resident and recruited macrophages have critical roles in the pathogenesis of metabolic dysfunction. Given the recent data implicating exposure to persistent organic pollutants (POPs) in the pathogenesis of metabolic diseases, the current study was designed to examine the effects of the highly implicated organochlorine (OC) compounds oxychlordane and trans-nonachlor on overall macrophage function. Murine J774A.

View Article and Find Full Text PDF

Recent epidemiological studies have revealed significant positive associations between exposure to organochlorine (OC) pesticides and occurrence of the metabolic syndrome and there are a growing number of animal-based studies to support causality. However, the cellular mechanisms linking OC compound exposure and metabolic dysfunction remain elusive. Therefore, the present study was designed to determine if direct exposure to three highly implicated OC compounds promoted hepatic steatosis, the hepatic ramification of the metabolic syndrome.

View Article and Find Full Text PDF

Recent studies suggest there may be an environmental exposure component to the development and progression of non-alcoholic fatty liver disease (NAFLD) involving the organochlorine (OC) pesticides or their metabolites. However, the roles of OC compounds in the development of NAFLD has not been fully elucidated. Therefore, the current study was designed to determine if exposure to trans-nonachlor, a prevalent OC compound, could promote hepatocyte lipid accumulation and determine potential pro-steatotic mechanisms.

View Article and Find Full Text PDF

Hepatic steatosis is associated with hepatic insulin resistance as well as hypertriglyceridemia. Recent studies have determined exposure to organophosphate (OP) pesticides can cause dyslipidemia and hepatic steatosis. However, the mechanisms through which OPs induced hepatic steatosis are not completely understood.

View Article and Find Full Text PDF