Within class II bacteriocins, we assume the presence of a separate subfamily of antimicrobial peptides possessing a broad spectrum of antimicrobial activity. Although these peptides are structurally related to the subclass IIa (pediocin-like) bacteriocins, they have significant differences in biological activities and, probably, a mechanism of their antimicrobial action. A representative of this subfamily is acidocin A from TK9201.
View Article and Find Full Text PDFTo date, a number of lantibiotics have been shown to use lipid II-a highly conserved peptidoglycan precursor in the cytoplasmic membrane of bacteria-as their molecular target. The α-component (Lchα) of the two-component lantibiotic lichenicidin, previously isolated from the VK21 strain, seems to contain two putative lipid II binding sites in its -terminal and -terminal domains. Using NMR spectroscopy in DPC micelles, we obtained convincing evidence that the -terminal mersacidin-like site is involved in the interaction with lipid II.
View Article and Find Full Text PDFPediocin-like bacteriocins are among the natural antimicrobial agents attracting attention as scaffolds for the development of a new generation of antibiotics. Acidocin A has significant structural differences from most other members of this subclass. We studied its antibacterial and cytotoxic activity, as well as effects on the permeability of membranes in comparison with avicin A, the typical pediocin-like bacteriocin.
View Article and Find Full Text PDFBacteriocins are antimicrobial peptides ribosomally synthesized by both Gram-negative and Gram-positive bacteria, as well as by archaea. Bacteriocins are usually active against phylogenetically related bacteria, providing competitive advantage to their producers in the natural bacterial environment. However, some bacteriocins are known to have a broader spectrum of antibacterial activity, including activity against multidrug-resistant bacterial strains.
View Article and Find Full Text PDF