Publications by authors named "Daria Sodini"

We have previously shown that a cytochrome P450 (CYP450) hemoprotein from the 3A subfamily CYP3A13 for the mouse, serves as the sensor in the contraction of the ductus arteriosus in response to increased oxygen tension. In addition, we have identified endothelin-1 (ET-1) as the effector for this response. Here, we examined whether Cyp3a13 gene transfer confers oxygen sensitivity to cultured muscle cells from mouse aorta.

View Article and Find Full Text PDF

We have previously reported that bradykinin relaxes the fetal ductus arteriosus via endothelium-derived hyperpolarizing factor (EDHF) when other naturally occurring relaxants (prostaglandin E2, nitric oxide, and carbon monoxide) are suppressed, but the identity of the agent could not be ascertained. Here, we have examined in the mouse whether hydrogen sulfide (H2S) is a relaxant of the ductus and, if so, whether it may also function as an EDHF. We found in the vessel transcripts for the H2S synthetic enzymes, cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS), and the presence of these enzymes was confirmed by immunofluorescence microscopy.

View Article and Find Full Text PDF

Background: Microsomal prostaglandin E synthase-1 (mPGES1) is critical for prostaglandin E(2) formation in ductus arteriosus (DA) and, accordingly, in its patency. We previously reported that mPGES1 deletion, unlike cyclo-oxygenase (COX) suppression, is not followed by upregulation of relaxant nitric oxide (NO). Consequently, we proposed that a mPGES1 inhibitor may be better than currently used COX inhibitors in managing premature infants with persistent DA (PDA).

View Article and Find Full Text PDF

The fetal ductus arteriosus (DA) contracts to oxygen, and this feature, maturing through gestation, is considered important for its closure at birth. We have previously obtained evidence of the involvement of cytochrome P-450, possibly of the 3A subfamily (CYP3A), in oxygen sensing and have also identified endothelin (ET)-1 as the attendant effector for the contraction. Here, we examined comparatively wild-type (WT) and CYP3A-null (Cyp3a(-/-)) mice for direct validation of this concept.

View Article and Find Full Text PDF

We have previously shown (Ref. 2) that endothelium-derived hyperpolarizing factor (EDHF) becomes functional in the fetal ductus arteriosus on removal of nitric oxide and carbon monoxide. From this, it was proposed that EDHF originates from a cytochrome P-450 (CYP450)-catalyzed reaction being inhibited by the two agents.

View Article and Find Full Text PDF

Prostaglandin E2 (PGE2) plays a key role in the ductus arteriosus, prenatally by maintaining patency and postnatally by promoting tissue remodeling for closure. Here, by using near-term mouse fetuses with (wild-type, WT) and without microsomal PGE synthase-1 (mPGES1-/-), we have examined the importance of this enzyme for PGE2 formation and function. mPGES1-/- ductus, unlike WT ductus, contracted little, or not all, to indomethacin in vitro.

View Article and Find Full Text PDF

Expression and monooxygenase activity of various cytochrome P450 (CYP) enzymes along with constitutive androstane (CAR) and the pregnane X (PXR) receptors were investigated in the brain of control and phenobarbital-treated rabbits (80 mg/kg for 4 days). RT-PCR analysis, using specific primers, demonstrated that in control rabbits mRNAs of CYP 2A10, 2B4/5 and 3A6 were expressed, though to a different extent, in the liver, as well as in brain cortex, midbrain, cerebellum, striatum, hippocampus and hypothalamus, whilst CYP2A11 and 4B1 were not expressed in the hypothalamus. CAR was expressed in liver and all the brain regions examined, whereas the PXR was expressed only in liver and cortex.

View Article and Find Full Text PDF