Aging is a gradual decline of various functions of organisms resulting in diminished abilities to protect against the environmental damage and reinforce the physiological harmony. Age-related functional declines have been thought to be passive and not regulated. However, studies on numerous model organisms, from yeast to mammals, exposed that the mechanisms of lifespan regulation are remarkably conserved throughout the evolution.
View Article and Find Full Text PDFHow animals rewire cellular programs to survive cold is a fascinating problem with potential biomedical implications, ranging from emergency medicine to space travel. Studying a hibernation-like response in the free-living nematode Caenorhabditis elegans, we uncovered a regulatory axis that enhances the natural resistance of nematodes to severe cold. This axis involves conserved transcription factors, DAF-16/FoxO and PQM-1, which jointly promote cold survival by upregulating FTN-1, a protein related to mammalian ferritin heavy chain (FTH1).
View Article and Find Full Text PDFRegnase-1 is an evolutionarily conserved endoribonuclease. It degrades diverse mRNAs important for many biological processes including immune homeostasis, development and cancer. There are two competing models of Regnase-1-mediated mRNA silencing.
View Article and Find Full Text PDFBioTechnologia (Pozn)
December 2021
Ferritin is a unique buffering protein in iron metabolism. By storing or releasing iron in a tightly controlled manner, it prevents the negative effects of free ferrous ions on biomolecules in all domains of life - from bacteria to mammals. This review focuses on the structural features and activity of the ferritin protein family with an emphasis on nematode ferritins and the similarities in their biological roles with mammalian ferritins.
View Article and Find Full Text PDFBacterial small RNAs (sRNAs) in association with the chaperone protein Hfq regulate the expression of many target mRNAs. Since sRNAs' action is crucial to engendering a response to changing environmental conditions, their activity needs to be regulated. One such mechanism occurs at the post-transcriptional level and involves sponge RNAs, which sequester sRNAs affecting their regulatory output.
View Article and Find Full Text PDFBacterial regulatory RNAs require the chaperone protein Hfq to enable their pairing to mRNAs. Recent data showed that there is a hierarchy among sRNAs in the competition for access to Hfq, which could be important for the tuning of sRNA-dependent translation regulation. Here, seven structurally different sRNAs were compared using filter-based competition assays.
View Article and Find Full Text PDF