Structural transformations occurring in proteinaceous viral shells (capsids) can be induced by changing the pH of bathing solution, thus modifying the dissociation equilibrium of ionizable amino acids in proteins. To analyze the effects of electrostatic interactions on viral capsids, we construct a model of 2D isotropic elastic shells with embedded point charges located in the centers of mass of individual proteins. We find that modification of the electrostatic interactions between proteins affects not only the size and shape of capsids, but in addition induces substantial deformations of hexamers in capsid structures.
View Article and Find Full Text PDFMost of normal proliferative epithelia of plants and metazoans are topologically invariant and characterized by similar cell distributions according to the number of cell neighbors (DCNs). Here we study peculiarities of these distributions and explain why the DCN obtained from the location of intercellular boundaries and that based on the Voronoi tessellation with nodes located on cell nuclei may differ from each other. As we demonstrate, special microdomains where four or more intercellular boundaries converge are topologically charged.
View Article and Find Full Text PDFDuring embryonic development, structures with complex geometry can emerge from planar epithelial monolayers; studying these shape transitions is of key importance for revealing the biophysical laws involved in the morphogenesis of biological systems. Here, using the example of normal proliferative monkey kidney (COS) cell monolayers, we investigate global and local topological characteristics of this model system in dependence on its shape. The obtained distributions of cells by their valence demonstrate a difference between the spherical and planar monolayers.
View Article and Find Full Text PDFUnderstanding the principles of protein packing and the mechanisms driving morphological transformations in virus shells (capsids) during their maturation can be pivotal for the development of new antiviral strategies. Here, we study how these principles and mechanisms manifest themselves in icosahedral viral capsids assembled from identical symmetric structural units (capsomeres). To rationalize such shells, we model capsomers as symmetrical groups of identical particles interacting with a short-range potential typical of the classic Tammes problem.
View Article and Find Full Text PDFAlthough the polygonal shape of epithelial cells has been drawing the attention of scientists for several centuries, only a decade and a half ago it was demonstrated that distributions of polygon types (DOPTs) are similar in proliferative epithelia of many different plant and animal species. In this study, we show that hyper-proliferation of cancer cells disrupts this universal paradigm and results in randomly organized epithelial structures. Examining non-synchronized and synchronized HeLa cervix cells, we suppose that the spread of cell sizes is the main parameter controlling the DOPT in the cancer cell monolayers.
View Article and Find Full Text PDFUnderstanding the physicochemical processes occurring in viruses during their maturation is of fundamental importance since only mature viruses can infect host cells. Here we consider the irreversible and reversible morphological changes that occur with the dodecahedral φ6 procapsid during the sequential packaging of 3 RNA segments forming the viral genome. It is shown that the dodecahedral shape of all the four observed capsid states is perfectly reproduced by a sphere radially deformed by only two irreducible spherical harmonics with icosahedral symmetry and wave numbers l = 6 and l = 10.
View Article and Find Full Text PDFSingle-walled carbon nanotubes (SWCNTs) can be sorted by their structural parameters using organic molecules and polymers: some of which, demonstrating a profound affinity only for specific nanotubes, form dense coatings on them. Here, analyzing well-known examples of flavin group molecules and those of 2,4-dichlorophenoxyacetic acid, we show for the first time that successful formation of the considered coatings depends on the ability of molecules to wrap around the SWCNT in a commensurate way. Commensurability provides a decrease in the free energy of the resulting bilayer system and makes the coating much more stable.
View Article and Find Full Text PDFSince Robert Hooke studied cork cell patterns in 1665, scientists have been puzzled by why cells form such ordered structures. The laws underlying this type of organization are universal, and we study them comparing the living and non-living two-dimensional systems self-organizing at the spherical surface. Such-type physical systems often possess trigonal order with specific elongated defects, scars and pleats, where the 5-valence and 7-valence vertices alternate.
View Article and Find Full Text PDFClear understanding of the principles that control the arrangement of proteins and their self-assembly into viral shells is very important for the development of antiviral strategies. Here we consider the structural peculiarities and hidden symmetry of the anomalous bluetongue virus (BTV) capsid. Each of its three concentric shells violates the paradigmatic geometrical model of Caspar and Klug, which is otherwise well suited to describe most of the known icosahedral viral shells.
View Article and Find Full Text PDFContractile ejection nanomachines being sheath-tube assemblies create an opening in the cell membrane to translocate molecules or ions across it. Here, on the most structurally investigated examples of the bacteriophage T4 tail and pyocin R2, we show that the rearrangement of the sheath structure resulting in its contraction and twist occurs in such a way that the contracted sheath becomes commensurate with the inner tube. This fact dictates the previously unknown simple geometrical relationship between the nanotube symmetries.
View Article and Find Full Text PDF