Understanding how alcohol molecules interact with the Brønsted acid sites (BAS) of zeolites is a prerequisite to the design of zeolite catalysts and catalytic processes. Here, we report IR spectra for the adsorption of ethanol on a highly crystalline sample of H-ZSM-5 zeolites exposed to ethanol gas at increasing pressure. We use density functional theory in combination with a FERMI resonance model to assign the measured spectra to a single adsorbed ethanol molecule per BAS.
View Article and Find Full Text PDFLiquid crystals have found a wide area of application over the last few decades, proving to be excellent materials for tunable optics from visible to near-infrared frequencies. Currently, much effort is devoted to demonstrating their applicability at THz frequencies (1-10 THz), where tremendous advances of broadband and intense sources have been achieved. Yet, a detailed understanding of THz-triggered dynamics in liquid crystals is incomplete.
View Article and Find Full Text PDFWe present here a joint experimental and computational study on the formation of benzothiazoles. Our investigation reveals a green protocol for accessing benzothiazoles from acyl chlorides using either water alongside a reducing agent as the reaction medium or in combination with stoichiometric amounts of a weak acid, instead of the harsh conditions and catalysts previously reported. Specifically, we show that a protic solvent, particularly water, enables the formation of 2-substituted benzothiazoles from N-acyl 1,2-aminothiophenols already at room temperature, without the need for strong acids or metal catalysts.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2022
The paper illustrates the Activity Weighted Velocities (AWV) methodology to compute Vibrational Circular Dichroism (VCD) anharmonic spectra from Density Functional Theory (DFT) molecular dynamics. AWV calculates the spectra by the Fourier Transform of the time correlation functions of velocities, weighted by specific observables: the Atomic Polar Tensors (APTs) and the Atomic Axial Tensors (AATs). Indeed, AWV shows to correctly reproduce the experimental spectra for systems in the gas and liquid phases, both in the case of weakly and strongly interacting systems.
View Article and Find Full Text PDFWe present a methodology to compute, at reduced computational cost, Gibbs free energies, enthalpies, and entropies of adsorption from molecular dynamics. We calculate vibrational partition functions from vibrational energies, which we obtain from the vibrational density of states by projection on the normal modes. The use of a set of well-chosen reference structures along the trajectories accounts for the anharmonicities of the modes.
View Article and Find Full Text PDFHydrophobicity/hydrophilicity of aqueous interfaces at the molecular level results from a subtle balance in the water-water and water-surface interactions. This is characterized here via density functional theory-molecular dynamics (DFT-MD) coupled with vibrational sum frequency generation (SFG) and THz-IR absorption spectroscopies. We show that water at the interface with a series of weakly interacting materials is organized into a two-dimensional hydrogen-bonded network (2D-HB-network), which is also found above some macroscopically hydrophilic silica and alumina surfaces.
View Article and Find Full Text PDFThrough the prism of the rather controversial and elusive silica/water interface, ab initio DFT-based molecular dynamics simulations of the structure and non-linear SFG spectroscopy of the interface are analysed. Following our recent work [Phys. Chem.
View Article and Find Full Text PDFThe combined approach of gas phase IR-UV ion dip spectroscopy experiments and DFT-based molecular dynamics simulations for theoretical spectroscopy reveals the 3D structures of (Ac-Phe-OMe)1,2 peptides using their far-IR/THz signatures. Both experimental and simulated IR spectra are well-resolved in the 100-800 cm-1 domain, allowing an unambiguous assignment of the conformers, that could not be achieved in other more congested spectral domains. We also present and make proofs-of-principles for our newly developed theoretical method for the assignment of (anharmonic) vibrational modes from MD simulations based on graph theory coupled to APT-weighted internal coordinates velocities DOS spectra.
View Article and Find Full Text PDFWithin the general context of the electrochemical oxygen evolution reaction of the water oxidation/electrolysis, we focus on one essential aspect of electrochemical interfaces, i.e., the comprehension of the interaction and organisation of liquid water at the (semiconductor) (110)-CoO surface using density functional theory-molecular dynamics simulations.
View Article and Find Full Text PDFThe influence of enthalpic and entropic effects as well as of kinetic trapping processes on the structure of Ar/D2-tagged Cs+(H2O)3 clusters is studied by temperature-dependent infrared photodissociation spectroscopy combined with harmonic vibrational spectra calculations and anharmonic free energy profiles from finite temperature metadynamics molecular dynamics simulations. Each tag favors a different hydrogen bond network of water molecules, with Ar-tagging (vs. D2-tagging) of Cs+(H2O)3 leading to the lower energy conformation.
View Article and Find Full Text PDFThis work provides unambiguous definitions from theoretical simulations of the two interfacial regions named the BIL (binding interfacial layer) and DL (diffuse layer) at charged solid/water and air/water interfaces. The BIL and DL nomenclature follows the pioneering work of Wen et al. [Phys.
View Article and Find Full Text PDFWe provide a detailed description of the structure of water at the interface with the air (liquid-vapor LV interface) from state-of-the-art DFT-based molecular dynamics simulations. For the first time, a two-dimensional (2D) H-bond extended network has been identified and fully characterized, demonstrating that interfacial water is organized into a 2D sheet with H-bonds oriented parallel to the instantaneous surface and following its spatial and temporal oscillations. By analyzing the nonlinear vSFG (vibrational sum frequency generation) spectrum of the LV interface in terms of layer-by-layer signal, we demonstrate that the 2D water sheet is solely responsible for the spectral signatures, hence providing the interfacial 3.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2017
First-principles molecular dynamics (FPMD) simulations in the framework of Density Functional Theory (DFT) are carried out for the prediction of the infrared spectrum of the fluorinated molecule ClCFCF(CF)OCFCH in liquid and gas phase. This molecule is characterized by a flexible structure, allowing the co-existence of several stable conformers, that differ by values of the torsional angles. FPMD computed spectra are compared to the experimental ones, and to Boltzmann weighted IR spectra based on gas phase calculations.
View Article and Find Full Text PDF