Mutations introduced into macromolecules often exhibit epistasis, where the effect of one mutation alters the effect of another. Knowing the mechanisms that lead to epistasis is important for understanding how macromolecules work and evolve, as well as for effective macromolecular engineering. Here, we investigate the interplay between "contact epistasis" (epistasis arising from physical interactions between mutated residues) and "ensemble epistasis" (epistasis that occurs when a mutation redistributes the conformational ensemble of a macromolecule, thus changing the effect of the second mutation).
View Article and Find Full Text PDFEpistasis-when mutations combine nonadditively-is a profoundly important aspect of biology. It is often difficult to understand its mechanistic origins. Here, we show that epistasis can arise from the thermodynamic ensemble, or the set of interchanging conformations a protein adopts.
View Article and Find Full Text PDF