Next-generation pathogenicity predictors are designed to identify pathogenic mutations in genetic disorders but are increasingly used to detect driver mutations in cancer. Despite this, their suitability for cancer is not fully established. Here we have assessed the effectiveness of next-generation pathogenicity predictors when applied to cancer by using a comprehensive experimental benchmark of cancer driver and neutral mutations.
View Article and Find Full Text PDFAlterations in the exonuclease domain of DNA polymerase ε cause ultramutated cancers. These cancers accumulate AGA>ATA transversions; however, their genomic features beyond the trinucleotide motifs are obscure. We analyze the extended DNA context of ultramutation using whole-exome sequencing data from 524 endometrial and 395 colorectal tumors.
View Article and Find Full Text PDFHistones play a critical role in chromatin function but are susceptible to mutagenesis. In fact, numerous mutations have been observed in several cancer types, and a few of them have been associated with carcinogenesis. Histones are peculiar, as they are encoded by a large number of genes, and the majority of them are clustered in three regions of the human genome.
View Article and Find Full Text PDFCancer cells accumulate many genetic alterations throughout their lifetime, but only a few of them drive cancer progression, termed driver mutations. Driver mutations may vary between cancer types and patients, can remain latent for a long time and become drivers at particular cancer stages, or may drive oncogenesis only in conjunction with other mutations. The high mutational, biochemical, and histological tumor heterogeneity makes driver mutation identification very challenging.
View Article and Find Full Text PDFThe kidney is essential for systemic calcium homeostasis. Urinary calcium excretion can be viewed as an integrative renal response to endocrine and local stimuli. The extracellular calcium-sensing receptor (CaSR) elicits a number of adaptive reactions to increased plasma Ca levels including the control of parathyroid hormone release and regulation of the renal calcium handling.
View Article and Find Full Text PDFAlpha-fetoprotein (AFP) is a major embryo- and tumor-associated protein capable of binding and transporting a variety of hydrophobic ligands, including estrogens. AFP has been shown to inhibit estrogen receptor (ER)-positive tumor growth, which can be attributed to its estrogen-binding ability. Despite AFP having long been investigated, its three-dimensional (3D) structure has not been experimentally resolved and molecular mechanisms underlying AFP-ligand interaction remains obscure.
View Article and Find Full Text PDF