Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O) impurities in hydrogen (H) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H/O mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H/O mixtures.
View Article and Find Full Text PDF