Brachyury, a member of T-box gene family, is widely known for its major role in mesoderm specification in bilaterians. It is also present in non-bilaterian metazoans, such as cnidarians, where it acts as a component of an axial patterning system. In this study, we present a phylogenetic analysis of Brachyury genes within phylum Cnidaria, investigate differential expression and address a functional framework of Brachyury paralogs in hydrozoan Dynamena pumila.
View Article and Find Full Text PDFBackground: In almost all metazoans examined to this respect, the axial patterning system based on canonical Wnt (cWnt) signaling operates throughout the course of development. In most metazoans, gastrulation is polar, and embryos develop morphological landmarks of axial polarity, such as blastopore under control/regulation from cWnt signaling. However, in many cnidarian species, gastrulation is morphologically apolar.
View Article and Find Full Text PDFAt the polyp stage, most hydrozoan cnidarians form highly elaborate colonies with a variety of branching patterns, which makes them excellent models for studying the evolutionary mechanisms of body plan diversification. At the same time, molecular mechanisms underlying the robust patterning of the architecturally complex hydrozoan colonies remain unexplored. Using non-model hydrozoan Dynamena pumila we showed that the key components of the Wnt/β-catenin (cWnt) pathway (β-catenin, TCF) and the cWnt-responsive gene, brachyury 2, are involved in specification and patterning of the developing colony shoots.
View Article and Find Full Text PDFEpithelial folding (EF) is a fundamental morphogenetic process that can be observed in the development of many organisms ranging from metazoans to green algae. Being early branching metazoans, cnidarians represent the best models to study evolutionarily conserved morphogenetic processes, including EF. Hydrozoa is the most evolutionary advanced group of the phylum Cnidaria.
View Article and Find Full Text PDF