Publications by authors named "Daria Kriger"

Article Synopsis
  • Human pluripotent stem cells (hPSCs) can differentiate into any adult tissue, making them important for regenerative medicine and research into factors affecting their growth and characteristics.
  • The study analyzed the migration patterns of three hPSC cell lines (AD3, CaSR, and H9) through bright-field imaging, focusing on their "good" and "bad" morphological phenotypes.
  • Results showed that migration speed varied based on the cell line and growth environment, with notable differences in migration behavior between "good" and "bad" colonies, particularly in specific culture conditions.
View Article and Find Full Text PDF

The functioning of the human cornea heavily relies on the maintenance of its extracellular matrix (ECM) mechanical properties. Within this context, corneal stromal fibroblasts (CSFs) are essential, as they are responsible for remodeling the corneal ECM. In this study, we used a decellularized human amniotic membrane (dHAM) and a custom fibrillar collagen film (FCF) to explore the effects of fibrillar materials on human CSFs.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) are remarkable for the high activity level of ubiquitin-proteasome system-the molecular machinery of protein degradation in the cell. Various forms of the proteasome complexes comprising different subunits and interacting regulators are responsible for the substrate selectivity and degradation. Immunoproteasomes are amongst these forms which play an important role in antigen presentation; however, a body of recent evidence suggests their functions in pluripotent stem cells.

View Article and Find Full Text PDF

Background: ACTN4 is an actin-binding protein involved in many cellular processes, including cancer development. High ACTN4 expression is often associated with a poor prognosis. However, it has been identified as a positive marker for platinum-based adjuvant chemotherapy for non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

Alpha-actinin 4 (ACTN4) is an actin-binding protein of the spectrin superfamily. ACTN4 is found both in the cytoplasm and nucleus of eukaryotic cells. The main function of cytoplasmic ACTN4 is stabilization of actin filaments and their binding to focal contacts.

View Article and Find Full Text PDF