The toxic ribbon worm, Cephalothrix cf. simula (Palaeonemertea, Nemertea), possesses extremely high concentrations of tetrodotoxin (TTX). Although TTX has been found in the eggs of this species, the fate of the toxin in the ontogeny of the animal has not been explored.
View Article and Find Full Text PDFTetrodotoxin (TTX), a potent paralytic sodium channel blocker, is an intriguing marine toxin. Widely distributed in nature, TTX has attracted attention in various scientific fields, from biomedical studies to environmental safety concerns. Despite a long history of studies, many issues concerning the biosynthesis, origin, and spread of TTX in animals and ecosystems remain.
View Article and Find Full Text PDFTetrodotoxin (TTX)-producing bacteria have attracted great interest as a model system for study of the TTX biosynthetic route. Here, we report the complete genome of the TTX-producing bacterium sp. 1839.
View Article and Find Full Text PDFFor the first time, tetrodotoxin (TTX) was detected in a bacterial strain after five years of cultivation in laboratory conditions since its isolation from the animal host. A reliable method suitable for bacterial samples, high-performance liquid chromatography with tandem mass spectrometry, was used for toxin detection in spore and vegetative cultures of sp. 1839.
View Article and Find Full Text PDFThis review is devoted to the medical application of tetrodotoxin (TTX), a potent non-protein specific blocker of voltage-gated sodium (NaV) channels. The selectivity of action, lack of affinity with the heart muscle NaV channels, and the inability to penetrate the blood⁻brain barrier make this toxin an attractive candidate for anesthetic and analgesic drug design. The efficacy of TTX was shown in neuropathic, acute and inflammatory pain models.
View Article and Find Full Text PDFThis review is devoted to the marine bacterial producers of tetrodotoxin (TTX), a potent non-protein neuroparalytic toxin. In addition to the issues of the ecology and distribution of TTX-producing bacteria, this review examines issues relating to toxin migration from bacteria to TTX-bearing animals. It is shown that the mechanism of TTX extraction from toxin-producing bacteria to the environment occur through cell death, passive/active toxin excretion, or spore germination of spore-forming bacteria.
View Article and Find Full Text PDF