Publications by authors named "Daria Corcos"

Elevational gradients are characterized by strong environmental changes within small geographical distances, providing important insights on the response of biological communities to climate change. Mountain biodiversity is particularly sensitive to climate change, given the limited capacity to colonize new areas and the competition from upshifting lowland species. Knowledge on the impact of climate change on mountain insect communities is patchy, but elevation is known to influence parasitic interactions which control insect communities and functions within ecosystems.

View Article and Find Full Text PDF

Global change projections predict more recurrent and intense drought coupled with more frequent soil disturbance events and increased levels of N deposition related to intensive land-use. How these abiotic drivers interact with each other and with biotic drivers in determining plant community dynamics is still unclear. Our study aimed to disentangle the roles of biotic and abiotic drivers in plant natural succession after soil disturbance.

View Article and Find Full Text PDF

Landscapes are becoming increasingly urbanized, causing loss and fragmentation of natural habitats, with potentially negative effects on biodiversity. Insects are among the organisms with the largest diversity in urbanized environments. Here, we sampled predator (Ampulicidae, Sphecidae and Crabronidae) and parasitoid (Tachinidae) flower-visiting insects in 36 sites in the city of Rome (Italy).

View Article and Find Full Text PDF

Elevational gradients are characterized by strong abiotic variation within small geographical distances and provide a powerful tool to evaluate community response to variation in climatic and other environmental factors. We explored how temperature and habitat diversity shape the diversity of holometabolous predator and parasitoid insects along temperate elevational gradients in the European Alps. We surveyed insect communities along 12 elevational transects that were selected to separate effects of temperature from those of habitat diversity.

View Article and Find Full Text PDF