Publications by authors named "Daria Boffito"

The chemical structure of a delivery nanovehicle plays a pivotal role in determining the efficiency of drug delivery within the body. Leveraging the unique architecture of bottlebrush (BB) polymers-characterized by variations in backbone length, grafting density, and self-assembly morphology-offers a novel approach to understanding the influence of structural properties on biological behavior. In this study, developed a drug delivery system based on core-shell BB polymers synthesized using a "grafting-from" strategy.

View Article and Find Full Text PDF

Acoustic cavitation bubbles drive chemical processes through their dynamic lifecycle in liquids. These bubbles are abundant within sonoreactors, where their behavior becomes complex within clusters. This study quantifies their chemical effects within well-defined clusters using a new laser-based method.

View Article and Find Full Text PDF

With this manuscript we aim to initiate a discussion specific to educational actions around ultrasonics sonochemistry. The importance of these actions does not just derive from a mere pedagogical significance, but they can be an exceptional tool for illustrating various concepts in other disciplines, such as process intensification and microfluidics. Sonochemistry is currently a far-reaching discipline extending across different scales of applicability, from the fundamental physics of tiny bubbles and molecules, up to process plants.

View Article and Find Full Text PDF

Background And Objective: High-frequency chest wall compression (HFCC) therapy by airway clearance devices (ACDs) acts on the rheological properties of bronchial mucus to assist in clearing pulmonary secretions. Investigating low-frequency vibrations on the human thorax through numerical simulations is critical to ensure consistency and repeatability of studies by reducing extreme variability in body measurements across individuals. This study aims to present the numerical investigation of the harmonic acoustic excitation of ACDs on the human chest as a gentle and effective HFCC therapy.

View Article and Find Full Text PDF

Carbon capture, utilization, and sequestration (CCUS) is a promising solution to decarbonize the energy and industrial sectors to mitigate climate change. An integrated assessment of technological options is required for the effective deployment of CCUS large-scale infrastructure between CO production and utilization/sequestration nodes. However, developing cost-effective strategies from engineering and operation perspectives to implement CCUS is challenging.

View Article and Find Full Text PDF

Most ultrasound-based processes root in empirical approaches. Because nearly all advances have been conducted in aqueous systems, there exists a paucity of information on sonoprocessing in other solvents, particularly ionic liquids (ILs). In this work, we modelled an ultrasonic horn-type sonoreactor and investigated the effects of ultrasound power, sonotrode immersion depth, and solvent's thermodynamic properties on acoustic cavitation in nine imidazolium-based and three pyrrolidinium-based ILs.

View Article and Find Full Text PDF

Multicompartment particles have been produced to date by the self-assembly of linear multiblock polymers. Besides the large diversity of structures that can be obtained with this approach, these are highly sensitive to dilution and environmental factors. Here we show that using core-shell bottlebrush polymers with a hydrophobic polyester core as starting materials it is possible to create compartmentalized particles from the micrometer size down to the molecular scale.

View Article and Find Full Text PDF

Pectin is a valuable product that can be extracted from waste fruit peels. Here we propose the use of graphene oxide (GO)-based membranes for pectin concentration. The synthesized GO was functionalized with ethylenediamine (EDA) to molecularly design the GO framework.

View Article and Find Full Text PDF

Froth flotation is the most versatile process in mineral beneficiation, extensively used to concentrate a wide range of minerals. This process comprises mixtures of more or less liberated minerals, water, air, and various chemical reagents, involving a series of intermingled multiphase physical and chemical phenomena in the aqueous environment. Today's main challenge facing the froth flotation process is to gain atomic-level insights into the properties of its inherent phenomena governing the process performance.

View Article and Find Full Text PDF

A new nanocomposite based on Cloisite 30B clay modified with ZnO and AgO nanoparticles (Cloisite 30B/ZnO/AgO) was synthesized as an effective catalyst in the sono-photocatalytic process of crystal violet (CV) and methylene blue (MB) dyes simultaneously. The characteristics and catalytic activity of Cloisite 30B/ZnO/AgO nanocomposite were investigated under different conditions. The specific active surface for Cloisite 30B/ZnO/AgO nanocomposite was 18.

View Article and Find Full Text PDF

This research evaluates photocatalytic ozonation for removing 5 PFAS (PFOA/PFHxS/PFBS/6:2 FTS/GenX) from water using a WO/TiO catalyst under UVA-visible radiation. Four catalysts of varying WO content (0/1/3/5 wt%) were synthesized by sol-gel and characterized by XRD, TEM, STEM-EDS, HAADF-STEM, adsorption/desorption N isotherms, and DRS-UV-vis. 5 wt% WO/TiO was the optimal composition based on physicochemical properties and photocatalytic activity tests with methylene blue.

View Article and Find Full Text PDF

The vanadium-based metal-organic framework MIL-47 distinguishes itself among other MOFs for its distinctive structure and unique properties (, flexible structure, high thermal stability, and high surface area). The synthesis of MIL-47 has been reported from various metal precursors, including vanadium(iii) chloride (VCl) as a rich source of metal ions. Attempts have been made to include other starting materials, a step forward towards large-scale production.

View Article and Find Full Text PDF

This Review aims to provide a systematic analysis of the literature regarding ongoing debates in protein corona research. Our goal is to portray the current understanding of two fundamental and debated characteristics of the protein corona, namely, the formation of mono- or multilayers of proteins and their binding (ir)reversibility. The statistical analysis we perform reveals that these characterisitics are strongly correlated to some physicochemical factors of the NP-protein system (particle size, bulk material, protein type), whereas the technique of investigation or the type of measurement ( or ) do not impact the results, unlike commonly assumed.

View Article and Find Full Text PDF

The post-synthetic exchange (PSE) method is a well-proven route to replace, modify, and add different functionalities to metal-organic frameworks (MOFs). Particularly, the solvent-assisted cation substitution (SACS) technique has been reported to prepare mixed-metal multivariate metal-organic frameworks (MTV-MOFs). However, such a technique does not apply to all types of MOFs.

View Article and Find Full Text PDF

Hundreds of review studies have been published focusing on microplastics (MPs) and their environmental impacts. With the microbiota colonization of MPs being firmly established, MPs became an important carrier for contaminants to step inside the food web all the way up to humans. Thus, the continuous feed of MPs into the ecosystem has sparked a multitude of scientific concerns about their toxicity, characterization, and interactions with microorganisms and other contaminants.

View Article and Find Full Text PDF

In the present study, the development of innovative polyurethane-polyaniline/TiO modified floating materials applied in the sorption and photodegradation of rhodamine B from water matrix under solar light irradiation is reported. All the materials were fabricated with inexpensive and easy approaches and were properly characterized. The effect of the kind of polyaniline (PANI) dopant on the materials' behavior was investigated, as well as the role of the conducting polymer in the pollutant abatement on the basis of its physico-chemical characteristics.

View Article and Find Full Text PDF

Intensification of ultrasonic processes for diversified applications, including environmental remediation, extractions, food processes, and synthesis of materials, has received attention from the scientific community and industry. The mechanistic pathways involved in intensification of ultrasonic processes that include the ultrasonic generation of cavitation bubbles, radical formation upon their collapse, and the possibility of fine-tuning operating parameters for specific applications are all well documented in the literature. However, the scale-up of ultrasonic processes with large-scale sonochemical reactors for industrial applications remains a challenge.

View Article and Find Full Text PDF

We report the synthesis of Au nano- and microparticles that relies on α-D-glucose (CHO) as the reducer and stabilizer in a Rosette cell under 20 kHz ultrasound irradiation. The chemical and physical effects of ultrasonic irradiation on the synthesis were investigated. The results showed that an optimum pH is required for the formation of insoluble Au(0) particles.

View Article and Find Full Text PDF

Nanomaterials have supported important technological advances due to their unique properties and their applicability in various fields, such as biomedicine, catalysis, environment, energy, and electronics. This has triggered a tremendous increase in their demand. In turn, materials scientists have sought facile methods to produce nanomaterials of desired features, i.

View Article and Find Full Text PDF

The degradation of diclofenac has been realized for the first time by a piezo-enhanced sonophotocatalytic approach based on ZnO. The sonophotocatalytic degradation showed a slight enhancement in the degradation of the parent compound, whereas strong synergistic effects were observed for the mineralization process when suitable ZnO morphologies are used, reaching 70% of complete degradation of 25 ppm diclofenac using 0.1 g/L ZnO in 360 min.

View Article and Find Full Text PDF

A novel and highly sensitive tablet-based colorimetric sensor is developed for the detection of phosphate (Pi) in drinking and surface water using mercaptoacetic acid-capped gold nanoparticles (MA-AuNPs). Characterization of AuNPs and MA-AuNPs was achieved by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and Dynamic light scattering (DLS). The principle of this sensor is based on the aggregation and disaggregation mechanisms of AuNPs that result in a color change from blue to red due to the surface plasmon resonance effect, where europium ions (Eu) act as the aggregating agent.

View Article and Find Full Text PDF

The chemical effects of the acoustic cavitation generated by ultrasound translates into the production of highly reactive radicals. Acoustic cavitation is widely explored in aqueous solutions but it remains poorly studied in organic liquids and in particular in liquid/solid media. However, several heterogeneous catalysis reactions take place in organic solvents.

View Article and Find Full Text PDF

We present the synthesis of a new cerium(iii)-melamine coordination polymer (CMCP) by a mixed-solvothermal method and its characterization. Characterization techniques included Raman, Fourier Transformation Infra-Red (FTIR), X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM), in which the change in the electronic environment and the crystallinity were tracked. The characterization results confirm the coordination of cerium(iii) with melamine through -NH groups, instead of the N atoms of the triazine ring, for which we propose a mechanism of interaction.

View Article and Find Full Text PDF

We selected ruthenium (Ru) to improve the photocatalytic activity of a WO/ZrO composite. The synthesized Ru/WO/ZrO was then compared to a benchmark photocatalyst (S-TiO) in terms of photocatalytic disinfection of raw surface waters collected from the Nile Delta region, Egypt. The photocatalysts were immobilized on aluminum plates with polysiloxane to test them in repetitive cycles under the irradiation of a metal-halide lamp.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont93b0pomkto26t296abin76qbdofkgmv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once