Publications by authors named "Daren Stephens"

Spinal cord injury (SCI) results in permanent loss of motor functions. A significant aspect of the tissue damage and functional loss may be preventable as it occurs, secondary to the trauma. We show that the phospholipase A(2) (PLA(2)) superfamily plays important roles in SCI.

View Article and Find Full Text PDF

There is increasing evidence for a major and critical involvement of lipids in signal transduction and cellular trafficking, and this has motivated large-scale studies on lipid pathways. The Lipid Metabolites and Pathways Strategy consortium is actively investigating lipid metabolism in mammalian cells and has made available time-course data on various lipids in response to treatment with KDO(2)-lipid A (a lipopolysaccharide analog) of macrophage RAW 264.7 cells.

View Article and Find Full Text PDF

A series of 2-oxoamides based on dipeptides and pseudodipeptides were synthesized and their activities towards two human intracellular phospholipases A(2) (GIVA cPLA(2) and GVIA iPLA(2)) and one human secretory phospholipase A(2) (GV sPLA(2)) were evaluated. Derivatives containing a free carboxyl group are selective GIVA cPLA(2) inhibitors. A derivative based on the ethyl ester of an ether pseudodipeptide is the first 2-oxoamide, which preferentially inhibits GVIA iPLA(2).

View Article and Find Full Text PDF

The phospholipase A(2) (PLA(2)) superfamily hydrolyzes phospholipids to release free fatty acids and lysophospholipids, some of which can mediate inflammation and demyelination, hallmarks of the CNS autoimmune disease multiple sclerosis. The expression of two of the intracellular PLA(2)s (cPLA(2) GIVA and iPLA(2) GVIA) and two of the secreted PLA(2)s (sPLA(2) GIIA and sPLA(2) GV) are increased in different stages of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. We show using small molecule inhibitors, that cPLA(2) GIVA plays a role in the onset, and iPLA(2) GVIA in the onset and progression of EAE.

View Article and Find Full Text PDF

The development of selective inhibitors for individual PLA(2) enzymes is necessary in order to target PLA(2)-specific signaling pathways, but it is challenging due to the observed promiscuity of known PLA(2) inhibitors. In the current work, we present the development and application of a variety of synthetic routes to produce pentafluoro, tetrafluoro, and trifluoro derivatives of activated carbonyl groups in order to screen for selective inhibitors and characterize the chemical properties that can lead to selective inhibition. Our results demonstrate that the pentafluoroethyl ketone functionality favors selective inhibition of the GVIA iPLA(2), a very important enzyme for which specific, potent, reversible inhibitors are needed.

View Article and Find Full Text PDF

The Lipid Metabolites and Pathway Strategy (LIPID MAPS) Consortium is a nationwide initiative that has taken on the task of employing lipidomics to advance our understanding of lipid metabolism at the molecular and mechanistic level in living organisms. An important step toward this goal is to craft enabling analytical procedures to comprehensively measure all lipid species, to establish the precise structural identity of the lipid molecules analyzed, and to generate accurate quantitative information. The LIPID MAPS Consortium has succeeded in the implementation of a complete infrastructure that now provides tools for analysis of the global lipidome in cultured and primary cells.

View Article and Find Full Text PDF

A variety of 2-oxoamides and related amides based on natural and non-natural amino acids were synthesized. Their activity on two human intracellular phospholipases (GIVA cPLA(2) and GVIA iPLA(2)) and one human secretory phospholipase (GV sPLA(2)) was evaluated. We show that an amide based on (R)-gamma-norleucine is a highly selective inhibitor of GV sPLA(2).

View Article and Find Full Text PDF

We provide evidence that two members of the intracellular phospholipase A(2) family, namely calcium-dependent group IVA (cPLA(2) GIVA) and calcium-independent group VIA (iPLA(2) GVIA) may play important roles in Wallerian degeneration in the mouse sciatic nerve. We assessed the roles of these PLA(2)s in cPLA(2) GIVA(-/-) mice, and mice treated with a selective inhibitor of iPLA(2) GVIA (FKGK11). Additionally, the effects of both these PLA(2)s were assessed by treating cPLA(2) GIVA(-/-) mice with the iPLA(2) inhibitor.

View Article and Find Full Text PDF

A variety of lipophilic 2-oxoamides containing sulfonamide analogs of gamma-amino acids as well as acyl sulfonamides of gamma-aminobutyric acid were synthesized. Their ability to inhibit intracellular GIVA cPLA2 and GVIA iPLA2 as well as secreted GV sPLA2 was evaluated. The sulfonamide group seems a bioisosteric group suitable to replace the carboxyl group in 2-oxoamide inhibitors of GVIA cPLA2.

View Article and Find Full Text PDF

The GIVA phospholipase A(2) (PLA(2)) contains two domains: a calcium-binding domain (C2) and a catalytic domain. These domains are linked via a flexible tether. GIVA PLA(2) activity is Ca(2+)-dependent in that calcium binding promotes protein docking to the phospholipid membrane.

View Article and Find Full Text PDF

The Group IVA cytosolic phospholipase A2 (GIVA cPLA2) is a key provider of substrates for the production of eicosanoids and platelet-activating factor. We explored the structure-activity relationship of 2-oxoamide-based compounds and GIVA cPLA2 inhibition. The most potent inhibitors are derived from delta- and gamma-amino acid-based 2-oxoamides.

View Article and Find Full Text PDF

A variety of lipophilic 2-oxoamides based on gamma-aminobutyric and delta-aminovaleric analogues were synthesized. 2-oxoamides containing a tetrazole, a thioethyl or a thioacetyl group are weak inhibitors of GIVA cPLA(2), while derivatives containing a methyl tetrazole, a diethyl phosphonate or a thioethyl group are weak inhibitors of GV sPLA(2).

View Article and Find Full Text PDF

Arachidonic acid is released by phospholipase A(2) and converted into hundreds of distinct bioactive mediators by a variety of cyclooxygenases (COX), lipoxygenases (LO), and cytochrome P450s. Because of the size and diversity of the eicosanoid class of signaling molecules produced, a thorough and systematic investigation of these biological processes requires the simultaneous quantitation of a large number of eicosanoids in a single analysis. We have developed a robust liquid chromatography/tandem mass spectrometry method that can identify and quantitate over 60 different eicosanoids in a single analysis, and we applied it to agonist-stimulated RAW264.

View Article and Find Full Text PDF

Inhibitors of the Group IVA phospholipase A(2) (GIVA cPLA(2)) and GVIA iPLA(2) are useful tools for defining the roles of these enzymes in cellular signaling and inflammation. We have developed inhibitors of GVIA iPLA(2) building upon the 2-oxoamide backbone that are uncharged, containing ester groups. Although the most potent inhibitors of GVIA iPLA(2) also inhibited GIVA cPLA(2), there were three 2-oxoamide compounds that selectively and weakly inhibited GVIA iPLA(2).

View Article and Find Full Text PDF

Phospholipase A(2) (PLA(2)) forms are expressed in spinal cord, and inhibiting spinal PLA(2) induces a potent antihyperalgesia. Here, we examined the antihyperalgesic effects after systemic and i.t.

View Article and Find Full Text PDF

P388D1 cells release arachidonic acid (AA) and produce prostaglandin E2 (PGE2) upon long-term stimulation with lipopolysaccharide (LPS). The cytosolic Group IVA (GIVA) phospholipase A2 (PLA2) has been implicated in this pathway. LPS stimulation also results in increased expression and secretion of a secretory PLA2, specifically GV PLA2.

View Article and Find Full Text PDF

OmpT is a surface protease of gram-negative bacteria that has been shown to cleave antimicrobial peptides, activate human plasminogen, and degrade some recombinant heterologous proteins. We have analyzed the substrate specificity of OmpT by two complementary substrate filamentous phage display methods: (i) in situ cleavage of phage that display protease-susceptible peptides by Escherichia coli expressing OmpT and (ii) in vitro cleavage of phage-displayed peptides using purified enzyme. Consistent with previous reports, OmpT was found to exhibit a virtual requirement for Arg in the P1 position and a slightly less stringent preference for this residue in the P1' position (P1 and P1' are the residues immediately prior to and following the scissile bond).

View Article and Find Full Text PDF