Antifungal agents directed against novel therapeutic targets are required for treating invasive, chronic, and allergic infections. Competitive fitness profiling technologies have been used in a number of bacterial and yeast systems to identify druggable targets; however, the development of similar systems in filamentous fungi is complicated by the fact that they undergo cell fusion and heterokaryosis. Here, we demonstrate that cell fusion in under standard culture conditions is not predominately constitutive, as with most ascomycetes, but can be induced by a range of extracellular stressors.
View Article and Find Full Text PDFDihydroxyacid dehydratase (DHAD) is a key enzyme in the branched-chain amino acid biosynthetic pathway that exists in a variety of organisms, including fungi, plants and bacteria, but not humans. In this study we identified four putative DHAD genes from the filamentous fungus Aspergillus fumigatus by homology to Saccharomyces cerevisiae ILV3. Two of these genes, AFUA_2G14210 and AFUA_1G03550, initially designated AfIlv3A and AfIlv3B for this study, clustered in the same group as S.
View Article and Find Full Text PDF