Background: The metabolism of pyrimidine deoxynucleosides and nucleoside reverse transcriptase inhibitors has been studied in growing cells. However, many of these drugs are associated with mitochondrial toxicities observed in non-replicating tissues, such as in the heart, where their metabolism has not been investigated.
Methods: The aims of this study were twofold.
To test whether zidovudine (3'-azido-3'-deoxythymidine) (AZT) inhibition of thymidine phosphorylation causes depletion of the TTP pool resulting in mitochondrial DNA depletion, 3T3-F442a cells were differentiated in the presence of AZT and analyzed to determine mitochondrial DNA content and deoxynucleotide levels. These results suggest that AZT toxicity may not be related to deoxynucleotide pool alterations.
View Article and Find Full Text PDFAntimicrob Agents Chemother
April 2007
Zidovudine (AZT; 3'-azido-3'-deoxythymidine), a thymidine analog, has been a staple of highly active antiretroviral therapy. It is phosphorylated in the host to the triphosphate and functions by inhibiting the viral reverse transcriptase. However, long-term use of AZT is linked to various tissue toxicities, including cardiomyopathy.
View Article and Find Full Text PDF