Publications by authors named "Darci Rush"

Interpretation of bacteriohopanepolyol (BHP) biomarkers tracing microbiological processes in modern and ancient sediments relies on understanding environmental controls of production and preservation. BHPs from methanotrophs (35-aminoBHPs) were studied in methane-amended aerobic river-sediment incubations at different temperatures. It was found that: (i) With increasing temperature (4°C-40°C) a 10-fold increase in aminopentol (associated with Crenothrix and Methylobacter spp.

View Article and Find Full Text PDF

Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction-oxidation transformations of bio-available nitrogen. Within marine systems, nitrogen availability is often the limiting factor in the growth of autotrophic organisms, intrinsically linking the nitrogen and carbon cycles.

View Article and Find Full Text PDF

Aerobic methane oxidation (AMO) is one of the primary biologic pathways regulating the amount of methane (CH4) released into the environment. AMO acts as a sink of CH4, converting it into carbon dioxide before it reaches the atmosphere. It is of interest for (paleo)climate and carbon cycling studies to identify lipid biomarkers that can be used to trace AMO events, especially at times when the role of methane in the carbon cycle was more pronounced than today.

View Article and Find Full Text PDF

Rationale: Traditional investigation of bacteriohopanepolyols (BHPs) has relied on derivatisation by acetylation prior to gas chromatography/mass spectrometry (GC/MS) or liquid chromatography/MS (LC/MS) analysis. Here, modern chromatographic techniques (ultrahigh-performance liquid chromatography (UPLC)) and new column chemistries were tested to develop a method for BHP analysis without the need for derivatisation.

Methods: Bacterial culture and sedimentary lipid extracts were analysed using a Waters Acquity Xevo TQ-S triple quadrupole mass spectrometer in positive ion atmospheric pressure chemical ionisation (APCI) mode.

View Article and Find Full Text PDF

In marine oxygen minimum zones (OMZs), ammonia-oxidizing archaea (AOA) rather than marine ammonia-oxidizing bacteria (AOB) may provide nitrite to anaerobic ammonium-oxidizing (anammox) bacteria. Here we demonstrate the cooperation between marine anammox bacteria and nitrifiers in a laboratory-scale model system under oxygen limitation. A bioreactor containing 'Candidatus Scalindua profunda' marine anammox bacteria was supplemented with AOA (Nitrosopumilus maritimus strain SCM1) cells and limited amounts of oxygen.

View Article and Find Full Text PDF

Anaerobic ammonium-oxidizing (anammox) bacteria have been recognized as an important sink for fixed nitrogen and are detected in many natural environments. However, their presence in terrestrial ecosystems has long been overlooked, and their contribution to the nitrogen cycling in natural and agricultural soils is currently unknown. Here we describe the enrichment and characterization of anammox bacteria from a nitrogen-loaded peat soil.

View Article and Find Full Text PDF