Publications by authors named "Darby G Brooke"

A range of natural products from marine invertebrates, bacteria and fungi have been assessed as leads for nature-inspired antifouling (AF) biocides, but little attention has been paid to microalgal-derived compounds. This study assessed the AF activity of the spirocyclic imine portimine (1), which is produced by the benthic mat-forming dinoflagellate Vulcanodinium rugosum. Portimine displayed potent AF activity in a panel of four macrofouling bioassays (EC 0.

View Article and Find Full Text PDF

While clinically useful, microtubule-targeting agents are limited by factors that include their susceptibility to multidrug resistance. A series of aryl sulfonamides, terminally substituted with an amide or carboxylic acid, was synthesized and assayed for biological activity in two human cancer cell lines. The resulting antiproliferative activity data demonstrated that an amide was superior to a carboxylic acid in the para position.

View Article and Find Full Text PDF

Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening genetic disease in humans, affecting approximately 1 in 500 people. ADPKD is characterized by cyst growth in the kidney leading to progressive parenchymal damage and is the underlying pathology in approximately 10% of patients requiring hemodialysis or transplantation for end-stage kidney disease. The two proteins that are mutated in ADPKD, polycystin-1 and polycystin-2, form a complex located on the primary cilium and the plasma membrane to facilitate calcium ion release in the cell.

View Article and Find Full Text PDF

The avocado toxin (+)-R-persin (persin) is active at low micromolar concentrations against breast cancer cells and synergizes with the estrogen receptor modulator 4-hydroxytamoxifen. Previous studies in the estrogen receptor-positive breast cancer cell line MCF-7 indicate that persin acts as a microtubule-stabilizing agent. In the present study, we further characterize the properties of persin and several new synthetic analogues in human ovarian cancer cells.

View Article and Find Full Text PDF

AKR1C3 is a novel therapeutic target in castration-resistant prostate cancer (CRPC) and estrogen receptor (ER)-positive breast cancer because of its ability to produce testosterone and 17β-estradiol intratumorally, thus promoting nuclear receptor signaling and tumor progression. A panel of CRPC, ER-positive breast cancer and high/low AKR1C3-expressing cell lines were treated with SN33638, a selective inhibitor of AKR1C3, in the presence of hormone or prostaglandin (PG) precursors, prior to evaluation of cell proliferation and levels of 11β-PG F2α (11β-PGF2α), testosterone, 17β-estradiol, and prostate-specific antigen (PSA). A meta-analysis of AKR1C3 mRNA expression in patient samples was also conducted, which revealed that AKR1C3 mRNA was upregulated in CRPC, but downregulated in ER-positive breast cancer.

View Article and Find Full Text PDF

Inhibitors of the aldo-keto reductase enzyme AKR1C3 are of interest as potential drugs for leukemia and hormone-related cancers. A series of non-carboxylate morpholino(phenylpiperazin-1-yl)methanones were prepared by palladium-catalysed coupling of substituted phenyl or pyridyl bromides with the known morpholino(piperazin-1-yl)methanone, and shown to be potent (IC50∼100nM) and very isoform-selective inhibitors of AKR1C3. Lipophilic electron-withdrawing substituents on the phenyl ring were positive for activity, as was an H-bond acceptor on the other terminal ring, and the ketone moiety (as a urea) was essential.

View Article and Find Full Text PDF

High-throughput screening of a small-molecule library identified a 5-triazolo-2-arylpyridazinone as a novel inhibitor of the important glycolytic enzyme 6-phosphofructo-2-kinase/2,6-bisphosphatase 3 (PFKFB3). Such inhibitors are of interest due to PFKFB3's control of the important glycolytic pathway used by cancer cells to generate ATP. A series of analogues was synthesized to study structure-activity relationships key to enzyme inhibition.

View Article and Find Full Text PDF

A series of 4-anilinoquinoline derivatives related to the known inhibitor SGI-1027, containing side chains of varying pK(a), were prepared by acid-catalysed coupling of the pre-formed side chains with 4-chloroquinolines. The compounds were evaluated for their ability to reduce the level of DNMT1 protein in HCT116 human colon carcinoma cells by Western blotting. With a very strongly basic N-methylpyridinium side chain, only NHCO-linked compounds were effective, whereas less strongly basic ((diaminomethylene)hydrazono)ethyl or 3-methylpyrimidine-2,4-diamine side chains allowed both NHCO- and CONH-linked compounds to show activity.

View Article and Find Full Text PDF

A high-throughput screen identified 3-(3,4-dihydroisoquinolin-2(1H)-ylsulfonyl)benzoic acid as a novel, highly potent (low nM), and isoform-selective (1500-fold) inhibitor of aldo-keto reductase AKR1C3: a target of interest in both breast and prostate cancer. Crystal structure studies showed that the carboxylate group occupies the oxyanion hole in the enzyme, while the sulfonamide provides the correct twist to allow the dihydroisoquinoline to bind in an adjacent hydrophobic pocket. SAR studies around this lead showed that the positioning of the carboxylate was critical, although it could be substituted by acid isosteres and amides.

View Article and Find Full Text PDF

A structure-activity study of several new synthetic analogues of the avocado-produced toxin persin has been conducted, with compounds being evaluated for their cytostatic and pro-apoptotic effects in human breast cancer cells. A 4-pyridinyl derivative demonstrated activity comparable to that of the natural product, suggesting future directions for exploration of structure-activity relationships.

View Article and Find Full Text PDF

Reactivation of silenced tumor suppressor genes by 5-azacytidine (Vidaza) and its congener 5-aza-2'-deoxycytidine (decitabine) has provided an alternate approach to cancer therapy. We have shown previously that these drugs selectively and rapidly induce degradation of the maintenance DNA methyltransferase (DNMT) 1 by a proteasomal pathway. Because the toxicity of these compounds is largely due to their incorporation into DNA, it is critical to explore novel, nonnucleoside compounds that can effectively reactivate the silenced genes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: