J Tissue Eng Regen Med
December 2013
As a potential alternative to currently available skin substitutes and wound dressings, we explored the use of bioactive scaffolds made of plant-derived proteins. We hypothesized that 'green' materials, derived from renewable and biodegradable natural sources, may confer bioactive properties to enhance wound healing and tissue regeneration. We optimized and characterized fibrous scaffolds electrospun from soy protein isolate (SPI) with addition of 0.
View Article and Find Full Text PDFWe employ a direct method, time-of-flight secondary ion mass spectroscopy (ToF-SIMS), to determine experimentally the chemical compositions of the wetted and dewetted regions of an uncured epoxy thin film. Determining the composition of the dewetted region indicated the presence of a very thin sublayer of resin in what was thought to be a region devoid of resin. The capability of ToF-SIMS to probe small 65 x 65 microm(2) areas of the surface has permitted us to directly compare the SIMS spectra of the wetted and dewetted regions to the survey spectra of the reactants.
View Article and Find Full Text PDFAngle-resolved X-ray photoelectron spectroscopy (XPS) and dynamic secondary ion mass spectroscopy (DSIMS) experiments were conducted to assess the interactions between a diamine curing agent and a glycidoxysilane-modified glass substrate. This effort was motivated by earlier work, in which a fluorescent probe localized in dilute quantities in the silane layer was used to track the penetration of the resin into the silane layer, as well as the resin cure. XPS and DSIMS experiments were performed on the silane layers immersed only in the resin hardener, providing more detailed information about the concentration profile and structural reorganization within the silane layer due specifically to hardener penetration.
View Article and Find Full Text PDFIn the present work, we demonstrate the ability to electrospin wheat gluten, a polydisperse plant protein polymer that is currently available at roughly 0.50 dollars/lb. A variety of electrospinning experiments were carried out with wheat gluten from two sources, at different solution concentrations, and with native and denatured wheat gluten to illustrate the interplay between protein structure and the fluid dynamics of the electrospinning process.
View Article and Find Full Text PDFWe recently discovered that wheat gluten could be formed into a tough, plasticlike substance when thiol-terminated, star-branched molecules are incorporated directly into the protein structure. This discovery offers the exciting possibility of developing biodegradable high-performance engineering plastics and composites from renewable resources that are competitive with their synthetic counterparts. Wheat gluten powder is available at a cost of less than dollars 0.
View Article and Find Full Text PDF