Publications by authors named "Daqing Liao"

Astrocytes are morphologically intricate cells and actively modulate the function of the brain. Through numerous fine processes, astrocytes come into contact with neurons, blood vessels, and other glia cells. Emerging evidence has shown that astrocytes exhibit brain regional diversity in their morphology, transcriptome, calcium signaling, and functions.

View Article and Find Full Text PDF

Background: Prolonged exposure to general anesthetics during development is known to cause neurobehavioral abnormalities, but the cellular and molecular mechanisms involved are unclear. Microglia are the resident immune cells in the central nervous system and play essential roles in normal brain development.

Materials And Methods: In the study, postnatal day 7 (P7) C57BL/6 mice were randomly assigned to two groups.

View Article and Find Full Text PDF

Purpose: Local anesthetics (LAs) are an important alternative for postoperative analgesia; however, the short duration of LAs limits their use. Thus, we previously developed LL-1, a mixture of QX-OH and levobupivacaine (LB) that produces regional anesthesia for more than 10 h in rats. The aim of this study is to investigate the long-acting mechanism of LL-1 in vivo and in vitro.

View Article and Find Full Text PDF

Both opioids and nonsteroidal anti-inflammatory drugs (NSAIDS) produce deleterious side effects and fail to provide sustained relief in patients with chronic inflammatory pain. Peripheral neuroinflammation (PN) is critical for initiation and development of inflammatory pain. A better understanding of molecular mechanisms underlying PN would facilitate the discovery of new analgesic targets and the development of new therapeutics.

View Article and Find Full Text PDF

Neuropathic pain affects up to 10 % of the total population and no specific target is ideal for therapeutic need. The sodium leak channel (NALCN), a non-selective cation channel, mediates the background Na leak conductance and controls neuronal excitability and rhythmic behaviors. Here, we show that increases of NALCN expression and function in dorsal root ganglion (DRG) and dorsal spinal cord contribute to chronic constriction injury (CCI)-induced neuropathic pain in rodents.

View Article and Find Full Text PDF

: Hypersensitivity to general anesthetics may predict poor postoperative outcomes, especially among the older subjects. Therefore, it is essential to elucidate the mechanism underlying hypersensitivity to volatile anesthetics in the aging population. Given the fact that isoflurane sensitivity increases with aging, we hypothesized that deficiencies of mitochondrial function and elevated oxidative levels in the frontoparietal cortex may contribute to the enhanced sensitivity to isoflurane in aging mice.

View Article and Find Full Text PDF

TWIK-related K (TREK) channels are potential analgesic targets. However, selective activators for TREK with both defined action mechanism and analgesic ability for chronic pain have been lacking. Here, we report (1,3)-3-((4-(6-methylbenzo[]thiazol-2-yl)phenyl)carbamoyl)cyclopentane-1-carboxylic acid (C3001a), a selective activator for TREK, against other two-pore domain K (K2P) channels.

View Article and Find Full Text PDF

The cross talk between trigeminal ganglion (TG) neurons and satellite glial cells (SGCs) is crucial for the regulation of inflammatory orofacial pain. Substance P (SP) plays an important role by activating neurokinin (NK)-I receptors in this cross talk. The activation of extracellular signal-regulated kinase (ERK) 1/2, protein kinase A (PKA) and protein kinase C (PKC) in neurons and SGCs of peripheral ganglions by peripheral inflammation is associated with inflammatory hypersensitivity.

View Article and Find Full Text PDF

P2Y purinergic receptors expressed in neurons and satellite glial cells (SGCs) of the trigeminal ganglion (TG) contribute to inflammatory and neuropathic pain. P2Y receptor expression is reported in the spinal cord, dorsal root ganglion (DRG), and TG. In present study, the role of P2Y receptor in the TG in inflammatory orofacial pain of Sprague-Dawley (SD) rats was investigated.

View Article and Find Full Text PDF

Inflammatory orofacial pain, in which substance P (SP) plays an important role, is closely related to the cross-talk between trigeminal ganglion (TG) neurons and satellite glial cells (SGCs). SGC activation is emerging as the key mechanism underlying inflammatory pain through different signalling mechanisms, including glial fibrillary acidic protein (GFAP) activation, phosphorylation of mitogen-activated protein kinase (MAPK) signalling pathways, and cytokine upregulation. However, in the TG, the mechanism underlying SP-mediated orofacial pain generated by SGCs is largely unknown.

View Article and Find Full Text PDF

Lengthy use of general anesthetics (GAs) causes neurobehavioral deficits in the developing brain, which has raised significant clinical concerns such that the United States Food and Drug Administration (FDA) is warning on the use of GAs in children younger than 3 years. However, the molecular and cellular mechanisms for GAs-induced neurotoxicity remain largely unknown. Here, we report that sevoflurane (Sevo), a commonly used GA in pediatrics, caused compromised astrocyte morphogenesis spatiotemporally correlated to synaptic overgrowth, with reduced synaptic function in developing cortex in a regional-, exposure-length-, and age-specific manner.

View Article and Find Full Text PDF

Background And Objectives: Hyperpolarization-activation cyclic nucleotide-gated (HCN) channels contribute to the effects of lidocaine. Capsazepine (CPZ), a competitive inhibitor of capsaicin of transient receptor potential vanilloid-1 channel, has also been found to inhibit HCN channel currents ( ). This study was designed to investigate whether CPZ could prolong durations of lidocaine in regional anesthesia.

View Article and Find Full Text PDF

Objective: To investigate the analgesic mechanism of xylazine by inhibiting the activation of hyperpolarized cyclic nucleotide-gated (HCN) ion channels.

Methods: HCN subchannel 1 (HCN1) knockout mice (HCN1) and HCN1 wild type mice (HCN1) were intraperitoneally injected with physiological saline and xylazine (10, 20, 30, and 40 mg/kg). Mechanical pain test and tail flick test were used to test the analgesic effect of xylazine by using the percentage of the maximal possible effect (%MPE); The control group and test groups of different concentrations of xylazine (12.

View Article and Find Full Text PDF

Satellite glial cells (SGCs) activation in the trigeminal ganglia (TG) is critical in various abnormal orofacial sensation in nerve injury and inflammatory conditions. SGCs express several subtypes of P2 purinergic receptors contributing to the initiation and maintenance of neuropathic pain. The P2Y receptor, a G-protein-coupled receptor activated by uridine diphosphate (UDP)-glucose and other UDP sugars, mediates various physiologic events such as immune, inflammation, and pain.

View Article and Find Full Text PDF

Purpose: Titanium (Ti) is the key material used in dental implants because of its excellent biocompatibility. But wear and corrosion Ti particles had been widely reported to induce inflammation and promote bone absorption. However, little information is known about the damage of Ti particles on neurons.

View Article and Find Full Text PDF

Besides typical hydrophobic amino acids providing hydrophobic interactions, glutamine as a hydrophilic amino acid has also been known to be an important element in many self-assembling peptides, but it is still not clear how this particular amino acid contributes to the self-assembling process. We supposed that the dimethanediyl group in the side chain of glutamine could provide hydrophobic interaction for peptide self-assembly. To prove this hypothesis, we used the GNNQQNY peptide and its derivatives as examples to show the importance of the dimethanediyl group for peptide self-assembly.

View Article and Find Full Text PDF

Background And Objectives: Commonly used local anesthetics (eg, lidocaine) are nonselective in blocking sodium channel subtypes, potentially resulting in adverse events, such as prolonged muscle paralysis and unstable hemodynamics. Subtype-selective sodium channel block might avoid these unwanted adverse effects while preserving desirable anesthetic effects. The contributions of sodium channel subtypes in different components of regional anesthesia are unclear and this study assumed that selective sodium channel subtype block might produce selective nerve block.

View Article and Find Full Text PDF

Previous studies have demonstrated that volatile anesthetics could produce local anesthesia. Emulsified isoflurane at 8% has been reported to produce epidural anesthetic effect in rabbits. This study was designed to investigate the long-term epidural anesthetic effect of emulsified halothane in rabbits.

View Article and Find Full Text PDF

Aims: Sulfonylurea drugs exert an insulinotropic effect through ATP-sensitive potassium (KATP) channel inhibition in pancreatic islet cells. These channels are also expressed in cardiomyocytes and vascular smooth muscle cells (VSMCs), suggesting potential for adverse cardiovascular effects. We evaluated the effects of Gliquidone (Glq) on sulfonylurea receptors in HIT-T15 cells (SUR1), cardiomyocytes (SUR2A), and VSMCs (SUR2B).

View Article and Find Full Text PDF

Background: Local anesthetics (e.g., lidocaine) have been found to inhibit hyperpolarization-activated cyclic nucleotide-gated (HCN) channels besides sodium channels.

View Article and Find Full Text PDF

Background: The lidocaine derivative, QX-314, produces long-lasting regional anesthesia in various animal models. We designed this study to examine whether QX-314 could produce long-lasting intravenous regional anesthesia (IVRA) in a rat model.

Methods: IVRA was performed on tail of rats.

View Article and Find Full Text PDF

Background: QX-314 produces nociceptive blockade, facilitated by permeation through transient receptor potential vanilloid-1 (TRPV1) channels. TRPV1 channel can be activated by noxious heat and sensitized by volatile anesthetics. The authors hypothesized that emulsified isoflurane (EI) could enhance thermal TRPV1 channel activation-mediated sensory/nociceptive blockade by QX-314.

View Article and Find Full Text PDF

Objective: To investigate the changes in the currents of voltage-dependent calcium channels (VDCCs) in smooth muscle cells of basilar artery in a rabbit model of subarachnoid hemorrhage (SAH).

Methods: New Zealand white rabbits were randomly divided into five groups: sham (C), normal (N), 24 hours (S1), 48 hours (S2) and 72 hours (S3) after SAH. Non-heparinized autologous arterial blood (1 ml/kg) was injected into the cisterna magna to create SAH after intravenous anesthesia, and 1 ml/kg of saline was injected into cisterna magna in the sham group.

View Article and Find Full Text PDF

Lung alveolar epithelial cells are the first barrier exposed to volatile anesthetics, such as sevoflurane, prior to reaching the targeted neuronal cells. Previously, the effects of volatile anesthetics on lung surfactant were studied primarily with physicochemical models and there has been little experimental data from cell cultures. Therefore it was investigated whether sevoflurane induces apoptosis of A549 lung epithelial cells.

View Article and Find Full Text PDF

Background: The olfactory ensheathing cells (OECs) derived from olfactory bulb (OB) may improve motor function after transplantation in injured spinal cord. However, the effects of OEC transplantation on sensory function have not been reported yet. The purpose of this study is to investigate whether OEC transplantation could affect the sensory function and to analyze the underlying mechanism.

View Article and Find Full Text PDF