Publications by authors named "Daqin Yun"

Despite the many advantages for industrial mass production, vacuum-deposited organic solar cells (OSCs) suffer from low efficiency, primarily due to the limited molecular library of small-molecule donor and acceptor materials, which remains a significant challenge. Herein, two donor-acceptor-acceptor (D-A-A)-configured small-molecule donors, named TTBTDC and TTBTDC-F were synthesized, using 8H-thieno[2',3':4,5]thieno[3,2-b]thieno[2,3-d]pyrrole (TTP) as a new fused-ring donor unit. Benefiting from the strong electron-donating ability of the TTP moiety and the adoption of the D-A-A molecular configuration, these molecules exhibited strong visible and near-infrared absorption as well as deep-lying highest occupied molecular orbital (HOMO) energy levels.

View Article and Find Full Text PDF
Article Synopsis
  • * It utilizes a one-pot hydrothermal method to intercalate chloride anions in BiO, resulting in structures that facilitate rapid electron transfer and create multiple paths for charge movement.
  • * The TBB heterojunctions demonstrate significantly improved photocatalytic activity against tetracycline hydrochloride compared to existing materials, providing a valuable approach for designing efficient photocatalysts.
View Article and Find Full Text PDF

The development of high-performance organic photovoltaic materials is of crucial importance for the commercialization of organic solar cells (OSCs). Herein, two structurally simple donor-π-conjugated linker-acceptor (D-π-A)-configured small-molecule donors with methyl-substituted triphenylamine as D unit, 1,1-dicyanomethylene-3-indanone as A unit, and thiophene or furan as π-conjugated linker, named DTICPT and DTICPF, are developed. DTICPT and DTICPF are facilely prepared via a two-step synthetic process with simple procedures.

View Article and Find Full Text PDF

Bismuth oxychloride (BiOCl) has appeared as a popular candidate in photocatalysis field but is plagued by its poor visible light harvesting and low carriers-flow steering inherited from wide band gap. Integration of doping and heterojunction engineering into the bulk has proven to be an optimal and generally applied method for enabling excellent photocatalytic activity. Nevertheless, the previous reported BiOCl-based photocatalysts fabricated by the above strategies are still suffered from harsh synthesis process, poor interface stability and narrow application area.

View Article and Find Full Text PDF

The localized surface plasmon resonance (LSPR) from noble metal nanomaterials (NMs) is a promising solution to approach the theoretical efficiency for photovoltaic devices. However, the plasmon resonance of metal NMs with particular shapes and sizes can only be excited within narrow spectral ranges, which can hardly cover the broad-band solar spectrum. To address this issue, in this article, Ag NMs with irregular shapes and sizes are synthesized and embedded in the electron transport layer of perovskite solar cells.

View Article and Find Full Text PDF

Power conversion efficiency (PCE) of organic solar cells (OSCs) has crossed the 18% mark for OSCs, which are largely fabricated by spin-coating, and the optimal photoactive thickness is limited to 100 nm. To increase reproducibility of results with industrial roll-to-roll (R2R) processing, slot-die coating coupled with a ternary strategy for optimal performance of large-area, thick OSCs is used. Based on miscibility differences, a highly crystalline molecule, BTR-Cl, is incorporated, and the phase-separation kinetics of the D18:Y6 film is regulated.

View Article and Find Full Text PDF

Incorporating plasmonic nanostructures is a promising strategy to enhance both the optical and electrical characteristics of photovoltaic devices via more efficient harvesting of incident light. Herein, we report a facile fabrication scheme at low temperature for producing gold nanoparticles embedded in anatase TiO films, which can simultaneously improve the efficiency and stability of n-i-p planar heterojunction perovskite solar cells (PSCs). The PSCs based on rigid and flexible substrates with 0.

View Article and Find Full Text PDF

The structure-dependent thermal stability of fullerene electron transport layers (ETLs) and its impact on device stability have been underrated for years. Based on cocrystallographic understanding, herein, we develop a thermally stable ETL comprising a hybrid layer of [6,6]-phenyl-C-butyric acid methyl ester (PCBM) and [6,6]-phenyl-C-propylbenzene (PCPB). By tuning the weight ratios of PCBM and PCPB to influence the noncovalent intermolecular interactions and packing of fullerene derivatives, we obtained a champion device based on the 20PCPB (20 wt % addition of PCPB into the mixture of PCBM/PCPB) ETL and excellent thermal stability of 500 h under 85 °C thermal aging in a N atmosphere in the dark.

View Article and Find Full Text PDF

Although some kinds of semiconductor metal oxides (SMOs) have been applied as electron selective layers (ESLs) for planar perovskite solar cells (PSCs), electron transfer is still limited by low electron mobility and defect film formation of SMO ESLs fabricated via low-temperature solution process. Herein, the C interlayer between TiO and (HC(NH)PbI)(CHNHPbCl) is prepared by spin-coating and low-temperature annealing for planar n-i-p PSCs. The resultant TiO/C ESL shows good surface morphology, efficient electron extraction, and facilitation of high-quality perovskite film formation, which can be attributed to the suitable nanosize and the superior electronic property of C molecules.

View Article and Find Full Text PDF

A facile aqueous-based fabrication scheme is developed for producing annealing-free anatase TiO (AF-TiO) films that exhibit efficient electron transport properties in planar heterojunction perovskite solar cells (PSCs). AF-TiO films are fabricated by spin coating on a substrate a colloidal solution of anatase TiO nanoparticles (NPs) prepared via a low temperature hydrolytic sol-gel method. The resultant AF-TiO films show low electrical resistance, high transmittance in the visible and near-infrared regions and facilitation of high-quality perovskite film formation, which can be attributed to their homogeneous surface morphology and nanocrystallinity.

View Article and Find Full Text PDF

Most previous fiber-shaped solar cells were based on photoelectrochemical systems involving liquid electrolytes, which had issues such as device encapsulation and stability. Here, we deposited classical semiconducting polymer-based bulk heterojunction layers onto stainless steel wires to form primary electrodes and adopted carbon nanotube thin films or densified yarns to replace conventional metal counter electrodes. The polymer-based fiber cells with nanotube film or yarn electrodes showed power conversion efficiencies in the range 1.

View Article and Find Full Text PDF

Conventional fiber-shaped polymeric or dye-sensitized solar cells (DSSCs) are usually made into a double-wire structure, in which a secondary electrode wire (e.g., Pt) was twisted along the primary core wire consisting of active layers.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9qqiemklt92g469ofe4rv0d4qu8hq5or): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once