We establish an equivalent circuit model of the GaN-based micro-LED system incorporating the parasitic parameters of the printed circuit board and bonding wires. Our deep analysis reveals that the parameters of intrinsic micro-LED significantly impact the modulation bandwidth of micro-LED. As the resistance and capacitance of micro-LED increases, the bandwidth of micro-LED decreases sharply.
View Article and Find Full Text PDFGaN-based μLEDs with superior properties have enabled outstanding achievements in emerging micro-display, high-quality illumination, and communication applications, especially white-light visible light communication (WL-VLC). WL-VLC systems can simultaneously provide white-light solid-state lighting (SSL) while realizing high-speed wireless optical communication. However, the bandwidth of conventional white-light LEDs is limited by the long-lifetime yellow yttrium aluminum garnet (YAG) phosphor, which restricts the available communication performance.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2021
Artificial synapses and neurons are two critical, fundamental bricks for constructing hardware neural networks. Owing to its high-density integration, outstanding nonlinearity, and modulated plasticity, memristors have attracted emerging attention on emulating biological synapses and neurons. However, fabricating a low-power and robust memristor-based artificial neuron without extra electrical components is still a challenge for brain-inspired systems.
View Article and Find Full Text PDF