Capturing sunlight to fuel the water splitting reaction (WSR) into O and H is the leitmotif of the research around artificial photosynthesis. Organic semiconductors have now joined the quorum of materials currently dominated by inorganic oxides, where for both families of compounds the bandgaps and energies can be adjusted synthetically to perform the Water Splitting Reaction. However, elaborated and tedious synthetic pathways are necessary to optimize the photophysical properties of organic semiconductors.
View Article and Find Full Text PDFThere has been considerable interest in building switching functions into self-assembled monolayers with switching actuated by external stimuli such as light, electrical current, heat, pressure or chemical changes. In this study, dual switching functionality has been built into azobenzene based molecular monolayers. Switching behaviour has been compared for unsubstituted azobenzene monolayer adsorbates and two other monolayers whose position on the terminal phenyl group is substituted by ethyl and isopropyl chains, respectively.
View Article and Find Full Text PDFPhosphorene, a semiconducting two-dimensional material, has recently attracted huge interest due to its potential applications in opto-electronics. The first attempts to synthesize phosphorene were based mainly on mechanical and chemical exfoliations. A few years later, different groups reported the synthesis of phosphorene using the molecular beam epitaxy process, which opened the way for research on physical properties.
View Article and Find Full Text PDFDue to its diverse allotropes and intriguing properties, 2D phosphorus, also known as phosphorene, is a material of great interest. Here, the successful growth of flat hexagonal 2D phosphorus on Au(111) is reported. Starting from phosphorus linear chains at low coverage, a porous network and finally an extended 2D flat hexagonal (HexP) layer while increasing phosphorus deposition is formed.
View Article and Find Full Text PDFWe synthesized a sublimable molecular spin crossover Fe(II) complex based on the Schiff base tridentate ligand qsal-NEt (5-diethylamino-2-((quinolin-8-ylimino)methyl)phenol). The compound undergoes a transition in temperature with thermally induced excited spin state-trapping (TIESST) for high-temperature sweep rates, which can be suppressed by reducing the sweep rate. The X-ray absorption spectroscopy (XAS) studies on the microcrystalline powder confirm the TIESST effect.
View Article and Find Full Text PDFTo create complementary metal oxide semiconductor compatible molecular devices, more insights into the electrode property regarding its metal/semiconductor doping level and creating a functional molecular device are required. In this work, we constructed an EGaIn/alkanethiol/Au-Si molecular diode (with a rectification ratio of 50.70) induced by Schottky barriers within a gold-silicon doped electrode instead of the functional property of molecules.
View Article and Find Full Text PDFMonolayer transition metal dichalcogenide VTe exhibits multiple charge density wave (CDW) phases, mainly (4 × 4) and (4 × 1). Here we report facile dynamic and tens-of-nanometer scale switching between these CDW phases with gentle bias pulses in scanning tunneling microscopy. Bias pulses purposely stimulate a reversible random CDW symmetry change between the isotropic (4 × 4) and anisotropic (4 × 1) CDWs, as well as CDW phase slips and rotation.
View Article and Find Full Text PDFQuantum interference (QI) is well recognised as a significant contributing factor to the magnitude of molecular conductance values in both single-molecule and large area junctions. Numerous structure-property relationship studies have shown that -connected oligo(phenyleneethynylene) (OPE) based molecular wires exemplify the impact of constructive quantum interference (CQI), whilst destructive quantum interference (DQI) effects are responsible for the orders of magnitude lower conductance of analogous -contacted OPE derivatives, despite the somewhat shorter effective tunnelling distance. Since molecular conductance is related to the value of the transmission function, evaluated at the electrode Fermi energy, (), which in turn is influenced by the presence and relative energy of (anti)resonances, it follows that the relative single-molecule conductance of - and -contacted OPE-type molecules is tuned both by the anchor group and the nature of the electrode materials used in the construction of molecular junctions (gold|molecule|gold gold|molecule|graphene).
View Article and Find Full Text PDFWe have assembled 4,8,12-tri--octyl-4,8,12-triazatrianguleniumtetrafluoroborate (TATA-BF) on highly oriented pyrolytic graphite (HOPG) and have studied the structure and tunneling properties of this self-assembled monolayer (SAM) using scanning tunneling microscopy (STM) under ambient conditions. We show that the triazatriangulenium cations TATA form hexagonally packed structures driven by the interaction between the aromatic core and the HOPG lattice, as evidenced by density functional theory (DFT) modeling. According to the DFT results, the three alkyl chains of the platform tend to follow the main crystallographic directions of HOPG, leading to a different STM appearance.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2023
It has recently been demonstrated how the nitrogen dopant concentration in graphene can be controlled spatially on the nano-meter scale using a molecular mask. This technique may be used to create ballistic electron optics-like structures of high/low doping regions; for example, to focus electron beams, harnessing the quantum wave nature of the electronic propagation. Here, we employ large-scale Greens function transport calculations based on a tight-binding approach.
View Article and Find Full Text PDFBand engineering is employed thoroughly and targets technologically scalable photoanodes for solar water splitting applications. Complex and costly recipes are necessary, often for average performances. Here, we report simple photoanode growth and thermal annealing with effective band engineering results.
View Article and Find Full Text PDFLack of reproducibility hampers molecular devices integration into large-scale circuits. Thus, incorporating operando characterization can facilitate the understanding of multiple features producing disparities in different devices. In this work, we report the realization of hybrid molecular graphene field effect transistors (m-GFETs) based on 11-(Ferrocenyl)undecanethiol (FcCSH) micro self-assembled monolayers (μSAMs) and high-quality graphene (Gr) in a back-gated configuration.
View Article and Find Full Text PDFWe show that through the introduction of short dimethylsiloxane chains, it was possible to suppress the crystalline state of CBP in favor of various types of organization, transitioning from a soft crystal to a fluid liquid crystal mesophase, then to a liquid state. Characterized by X-ray scattering, all organizations reveal a similar layered configuration in which layers of edge-on lying CBP cores alternate with siloxane. The difference between all CBP organizations essentially lay on the regularity of the molecular packing that modulates the interactions of neighboring conjugated cores.
View Article and Find Full Text PDFAtomically thin bismuth films (2D Bi) are becoming a promising research area due to their unique properties and their wide variety of applications in spintronics, electronic and optoelectronic devices. We report on the structural properties of Bi on Au(110), explored by low-energy electron diffraction (LEED), scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. At a Bi coverage lower than one monolayer (1 ML) various reconstructions are observed, we focus on Bi/Au(110)-c(2 × 2) reconstruction (at 0.
View Article and Find Full Text PDFWe demonstrate, based on low-temperature scanning tunneling microscopy (STM) and spectroscopy, a pronounced negative differential resistance (NDR) in spin-crossover (SCO) molecular devices, where a Fe SCO molecule is deposited on surfaces. The STM measurements reveal that the NDR is robust with respect to substrate materials, temperature, and the number of SCO layers. This indicates that the NDR is intrinsically related to the electronic structure of the SCO molecule.
View Article and Find Full Text PDFThe adsorption of phthalocyanine (HPc) on the 6H-SiC(0001)-(3 × 3) surface is investigated using X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure spectroscopy (NEXAFS), and density functional theory (DFT) calculations. Spectral features are tracked from the submonolayer to the multilayer growth regime, observing a significant modification of spectroscopic signals at low coverage with respect to the multilayer films, where molecules are weakly interacting. Molecules stay nearly flat on the surface at the mono and submonolayers.
View Article and Find Full Text PDFThe single-molecular conductance of a redox active viologen molecular bridge between Au|graphene electrodes has been studied in an electrochemical gating configuration in an ionic liquid medium. A clear "off-on-off" conductance switching behaviour has been achieved through gating of the redox state when the electrochemical potential is swept. The Au|viologen|graphene junctions show single-molecule conductance maxima centred close to the equilibrium redox potentials for both reduction steps.
View Article and Find Full Text PDFThis work reports on the electron-induced modification of NaCl thin film grown on Ag(110). We show using low energy electron diffraction that electron beam bombardment leads to desorption and formation of Cl vacancy defects on NaCl surface. The topographic structure of these defects is studied using scanning tunneling microscopy (STM) showing the Cl defects as depressions on the NaCl surface.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2021
The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance for longer molecules. In this respect, several studies involving different molecular backbones and anchoring groups have been performed.
View Article and Find Full Text PDFThe emergence of peculiar phenomena in 1D phosphorene chains (P chains) has been proposed in theoretical studies, notably the Stark and Seebeck effects, room temperature magnetism, and topological phase transitions. Attempts so far to fabricate P chains, using the top-down approach starting from a few layers of bulk black phosphorus, have failed to produce reliably precise control of P chains. We show that molecular beam epitaxy gives a controllable bottom-up approach to grow atomically thin, crystalline 1D flat P chains on a Ag(111) substrate.
View Article and Find Full Text PDFChemical coupling of functional molecules on top of the so-called platform molecules allows the formation of functional self-assembled monolayers (SAMs). An often-used example of such a platform is triazatriangulenium (TATA), which features an extended aromatic core providing good electronic contact to the underlying metal surface. Here, we present a study of the SAM formation of a TATA platform on Au(111) employing scanning tunneling microscopy (STM) under ambient atmospheric conditions.
View Article and Find Full Text PDFThe interaction of molecules with surfaces plays a crucial role in the electronic and chemical properties of supported molecules and needs a comprehensive description of interfacial effects. Here, we unveil the effect of the substrate on the electronic configuration of iron porphyrin molecules on Au(111) and graphene, and we provide a physical picture of the molecule-surface interaction. We show that the frontier orbitals derive from different electronic states depending on the substrate.
View Article and Find Full Text PDFThe synthesis of blue phosphorene by molecular beam epitaxy (MBE) has recently come under the spotlight due to its potential applications in electronic and optoelectronic devices. However, this synthesis remains a significant challenge. The surface reactivity between the P atoms and the Au atoms should be considered for the P/Au(111) system.
View Article and Find Full Text PDFIncorporating functional atomic sites in graphene is essential for realizing advanced two-dimensional materials. Doping graphene with nitrogen offers the opportunity to tune its chemical activity with significant charge redistribution occurring between molecules and substrate. The necessary atomic scale understanding of how this depends on the spatial distribution of dopants, as well as their positions relative to the molecule, can be provided by scanning tunneling microscopy.
View Article and Find Full Text PDF