Publications by authors named "Dapinder Kaur"

A wide range of life-threatening conditions with complicated pathogenesis involves neurovascular disorders encompassing Neurovascular unit (NVU) damage. The pathophysiology of NVU is characterized by several features including tissue hypoxia, stimulation of inflammatory and angiogenic processes, and the initiation of intricate molecular interactions, collectively leading to an elevation in blood-brain barrier permeability, atherosclerosis and ultimately, neurovascular diseases. The presence of compelling data about the significant involvement of the glycosylation in the development of diseases has sparked a discussion on whether the abnormal glycosylation may serve as a causal factor for neurovascular disorders, rather than being just recruited as a secondary player in regulating the critical events during the development processes like embryo growth and angiogenesis.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is perceived with various pathophysiological characteristics such oxidative stress, senile plaques, neuroinflammation, altered neurotransmission immunological changes, neurodegenerative pathways, and age-linked alterations. A great deal of studies even now are carried out for comprehensive understanding of pathological processes of AD, though many agents are in clinical trials for the treatment of AD. Retinoids and retinoic acid receptors (RARs) are pertinent to such attributes of the disease.

View Article and Find Full Text PDF

Growing evidence suggests that neuronal dysfunction in the endo-lysosomal and autophagic processes contributes to the onset and progression of neurodegenerative diseases such as Alzheimer's disease (AD). Since they are the primary cellular systems involved in the production and clearance of aggregated amyloid plaques, endo-lysosomal or autophagic equilibrium must be maintained throughout life. As a result, variations in the autophagic and endo-lysosomal torrent, as a measure of degenerative function in these sections or pathways, may have a direct impact on disease-related processes, such as Aß clearance from the brain and interneuronal deposition of Aß and tau aggregates, thus disrupting synaptic plasticity.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a paramount chronic neurodegenerative condition that has been affecting elderly people since the 1900s. It causes memory loss, disorientation, and poor mental function. AD is considered to be one of the most serious problems that dementia sufferers face.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases with motor disturbances, cognitive decline, and behavioral impairment. It is characterized by the extracellular aggregation of amyloid-β plaques and the intracellular accumulation of tau protein. AD patients show a cognitive decline, which has been associated with oxidative stress, as well as mitochondrial dysfunction.

View Article and Find Full Text PDF

During the last three decades, recombinant DNA technology has produced a wide range of hematopoietic and neurotrophic growth factors, including erythropoietin (EPO), which has emerged as a promising protein drug in the treatment of several diseases. Cumulative studies have recently indicated the neuroprotective role of EPO in preclinical models of acute and chronic neurodegenerative disorders, including Alzheimer's disease (AD). AD is one of the most prevalent neurodegenerative illnesses in the elderly, characterized by the accumulation of extracellular amyloid-ß (Aß) plaques and intracellular neurofibrillary tangles (NFTs), which serve as the disease's two hallmarks.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is one of the most prevailing neurodegenerative disorders of elderly humans associated with cognitive damage. Biochemical, epigenetic, and pathophysiological factors all consider a critical role of extracellular amyloid-beta (Aß) plaques and intracellular neurofibrillary tangles (NFTs) as pathological hallmarks of AD. In an endeavor to describe the intricacy and multifaceted nature of AD, several hypotheses based on the roles of Aß accumulation, tau hyperphosphorylation, impaired cholinergic signaling, neuroinflammation, and autophagy during the initiation and advancement of the disease have been suggested.

View Article and Find Full Text PDF

Despite not being utilized as considerably as other antidepressants in the therapy of depression, the monoamine oxidase inhibitors (MAOIs) proceed to hold a place in neurodegeneration and to have a somewhat broad spectrum in respect of the treatment of neurological and psychiatric conditions. Preclinical and clinical studies on MAOIs have been developing in recent times, especially on account of rousing discoveries manifesting that these drugs possess neuroprotective activities. The altered brain levels of monoamine neurotransmitters due to monoamine oxidase (MAO) are directly associated with various neuropsychiatric conditions like Alzheimer's disease (AD).

View Article and Find Full Text PDF