Publications by authors named "Daphne Van Leeuwen"

Article Synopsis
  • The coevolution of herpesviruses, like EBV, and their hosts has led to the development of immune evasion strategies, such as downregulation of HLA class I molecules to avoid detection by cytotoxic T cells.
  • EBV’s BILF1 protein is expressed early during the viral lytic cycle and selectively targets various HLA-A, HLA-B, and HLA-E molecules, reducing their surface expression, while having little effect on HLA-C.
  • The study provides insights into the specific mechanisms behind BILF1's function and compares its evolution across different lymphocryptoviruses, noting that while some share this ability, others like the New World marmoset virus do not.
View Article and Find Full Text PDF

Replication of the human herpesvirus Epstein-Barr virus drastically impairs cellular protein synthesis. This shutoff phenotype results from mRNA degradation upon expression of the early lytic-phase protein BGLF5. Interestingly, BGLF5 is the viral DNase, or alkaline exonuclease, homologues of which are present throughout the herpesvirus family.

View Article and Find Full Text PDF

Viruses use a wide range of strategies to modulate the host immune response. The human gammaherpesvirus EBV, causative agent of infectious mononucleosis and several malignant tumors, encodes proteins that subvert immune responses, notably those mediated by T cells. Less is known about EBV interference with innate immunity, more specifically at the level of TLR-mediated pathogen recognition.

View Article and Find Full Text PDF

EBV persists for life in the human host while facing vigorous antiviral responses that are induced upon primary infection. This persistence supports the idea that herpesviruses have acquired dedicated functions to avoid immune elimination. The recently identified EBV gene product BNLF2a blocks TAP.

View Article and Find Full Text PDF

The DNase/alkaline exonuclease (AE) genes are well conserved in all herpesvirus families, but recent studies have shown that the AE proteins of gammaherpesviruses such as Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) exhibit an additional function which shuts down host protein synthesis. One correlate of this additional shutoff function is that levels of cell surface HLA molecules are downregulated, raising the possibility that shutoff/AE genes of gammaherpesviruses might contribute to viral immune evasion. In this study, we show that both BGLF5 (EBV) and SOX (KSHV) shutoff/AE proteins do indeed impair the ability of virus-specific CD8+ T-cell clones to recognize endogenous antigen via HLA class I.

View Article and Find Full Text PDF

gamma 1-Herpesviruses such as Epstein-Barr virus (EBV) have a unique ability to amplify virus loads in vivo through latent growth-transforming infection. Whether they, like alpha- and beta-herpesviruses, have been driven to actively evade immune detection of replicative (lytic) infection remains a moot point. We were prompted to readdress this question by recent work (Pudney, V.

View Article and Find Full Text PDF

Relatively little is known about immune evasion during the productive phase of infection by the gamma(1)-herpesvirus Epstein-Barr virus (EBV). The use of a unique system to isolate cells in lytic cycle allowed us to identify a host shutoff function operating in productively EBV-infected B cells. This impairment of protein synthesis results from mRNA degradation induced upon expression of the early lytic-cycle gene product BGLF5.

View Article and Find Full Text PDF

Human adenovirus (HAdV) infection is a frequent and potentially severe complication following allogeneic stem cell transplantation in children. Because treatment with antiviral drugs is often ineffective, adoptive transfer of donor-derived HAdV-specific T cells able to control viral replication of HAdV of multiple serotypes may be an option for therapy. In healthy donors, predominantly HAdV-specific T cells expressing CD4 are detected.

View Article and Find Full Text PDF

Herpesviruses are known to influence expression of major histocompatibility complex (MHC) class I molecules on the surface of infected cells using a variety of mechanisms. Downregulation of MHC class I expression prohibits detection and elimination of infected cells by cytotoxic T lymphocytes. To investigate the effect of rat cytomegalovirus (RCMV) infection on MHC class I expression, we infected immortalized and primary rat fibroblasts with RCMV and monitored surface expression of MHC class I molecules at various time-points postinfection.

View Article and Find Full Text PDF

Human herpesviruses, including EBV, persist for life in infected individuals. During the lytic replicative cycle that is required for the production of infectious virus and transmission to another host, many viral Ags are expressed. Especially at this stage, immune evasion strategies are likely to be advantageous to avoid elimination of virus-producing cells.

View Article and Find Full Text PDF

Detection and elimination of virus-infected cells by cytotoxic T lymphocytes depends on recognition of virus-derived peptides presented by MHC class I molecules. A critical step in this process is the translocation of peptides from the cytoplasm into the endoplasmic reticulum by the transporter associated with antigen processing (TAP). Here, we identified the bovine herpesvirus 1-encoded UL49.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) resides as a persistent infection in human leukocyte antigen (HLA) class II+ B lymphocytes and is associated with a number of malignancies. The EBV lytic-phase protein gp42 serves at least two functions: gp42 acts as the coreceptor for viral entry into B cells and hampers T-cell recognition via HLA class II molecules through steric hindrance of T-cell receptor-class II-peptide interactions. Here, we show that gp42 associates with class II molecules at their various stages of maturation, including immature alphabetaIi heterotrimers and mature alphabeta-peptide complexes.

View Article and Find Full Text PDF

Human CMV (HCMV) can elude CTL as well as NK cells by modulating surface expression of MHC class I molecules. This strategy would be most efficient if the virus would selectively down-regulate viral Ag-presenting alleles, while at the same time preserving other alleles to act as inhibitors of NK cell activation. We focused on the HCMV unique short (US) region encoded protein US2, which binds to newly synthesized MHC class I H chains and supports their dislocation to the cytosol for subsequent degradation by proteasomes.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) persists lifelong in infected hosts despite the presence of antiviral immunity. Many viral antigens are expressed during lytic infection. Thus, for EBV to spread, it must have evolved effective ways to evade immune recognition.

View Article and Find Full Text PDF

During co-evolution with its host, human cytomegalovirus has acquired multiple defense mechanisms to escape from immune recognition. In this study, we focused on US11, which binds to MHC class I heavy chains and mediates their dislocation to the cytosol and subsequent degradation by proteasomes. To examine which domains of class I heavy chains are involved in this process, we constructed chimeric HLA molecules of US11-sensitive and -insensitive class I molecules (HLA-A2 and HLA-G, respectively).

View Article and Find Full Text PDF

Granulocyte colony-stimulating factor (G-CSF) is the major regulator of neutrophil production. Studies in cell lines have established that conserved tyrosines Tyr704, Tyr729, Tyr744, Tyr764 within the cytoplasmic domain of G-CSF receptor (G-CSF-R) contribute significantly to G-CSF-induced proliferation, differentiation, and cell survival. However, it is unclear whether these tyrosines are equally important under more physiologic conditions.

View Article and Find Full Text PDF