The evolution of sexual dimorphisms requires divergence between sexes in the evolutionary trajectories of the traits involved. Discerning how genetic architecture could facilitate such divergence has proven challenging because of the difficulty in estimating non-additive and sex-linked genetic variances using traditional quantitative genetic designs. Here we use a three-generation, double-first-cousin pedigree design to estimate additive, sex-linked and dominance (co)variances for 12 traits in the water strider, Aquarius remigis.
View Article and Find Full Text PDFPopulations often contain discrete classes or morphs (e.g., sexual dimorphisms, wing dimorphisms, trophic dimorphisms) characterized by distinct patterns of trait expression.
View Article and Find Full Text PDFThis article extends and adds more realism to Lande's analytical model for evolution under mate choice by using individual-based simulations in which females sample a finite number of males and the genetic architecture of the preference and preferred trait evolves. The simulations show that the equilibrium heritabilities of the preference and preferred trait and the genetic correlation between them (r G), depend critically on aspects of the mating system (the preference function, mode of mate choice, choosiness, and number of potential mates sampled), the presence or absence of natural selection on the preferred trait, and the initial genetic parameters. Under some parameter combinations, preferential mating increased the heritability of the preferred trait, providing a possible resolution for the lek paradox.
View Article and Find Full Text PDFTheory predicts that correlational selection on two traits will cause the major axis of the bivariate G matrix to orient itself in the same direction as the correlational selection gradient. Two testable predictions follow from this: for a given pair of traits, (1) the sign of correlational selection gradient should be the same as that of the genetic correlation, and (2) the correlational selection gradient should be positively correlated with the value of the genetic correlation. We test this hypothesis with a meta-analysis utilizing empirical estimates of correlational selection gradients and measures of the correlation between the two focal traits.
View Article and Find Full Text PDFThe relationship between traits that compete for resources is influenced by variance in the acquisition and allocation of resources. The difficulty of accurately measuring these underlying physiological processes has hampered studies of resource-based trade-offs. Here, we explore the ability of principal components analysis (PCA) to extract axes corresponding to acquisition and allocation in a bivariate trade-off by comparing these axes to estimates obtained using physiological measurements.
View Article and Find Full Text PDFUsing quantitative genetic theory, we develop predictions for the evolution of trade-offs in response to directional and correlational selection. We predict that directional selection favoring an increase in one trait in a trade-off will result in change in the intercept but not the slope of the trade-off function, with the mean value of the selected trait increasing and that of the correlated trait decreasing. Natural selection will generally favor an increase in some combination of trait values, which can be represented as directional selection on an index value.
View Article and Find Full Text PDFBumblebees and other eusocial bees offer a unique opportunity to analyze the evolution of body size differences between sexes. The workers, being sterile females, are not subject to selection for reproductive function and thus provide a natural control for parsing the effects of selection on reproductive function (i.e.
View Article and Find Full Text PDFThe evolutionary trajectories of trade-offs are ultimately governed by the evolution of the underlying physiological processes of the acquisition and subsequent allocation of resources. In this study, we focused directly on acquisition and allocation as traits and estimated their genetic architecture in the trade-off between flight capability and reproduction in the cricket, Gryllus firmus. To determine the evolutionary genetics of acquisition and allocation both within and between resource environments, we performed a large-scale quantitative genetic breeding experiment in which families were split over several resource levels.
View Article and Find Full Text PDFAnimal sperm show remarkable diversity in both morphology and molecular composition. Here we provide the first report of intense intrinsic fluorescence in an animal sperm. The sperm from a semi-aquatic insect, the water strider, Aquarius remigis, contains an intrinsically fluorescent molecule with properties consistent with those of flavin adenine dinucleotide (FAD), which appears first in the acrosomal vesicle of round spermatids and persists in the acrosome throughout spermiogenesis.
View Article and Find Full Text PDFPredicting evolutionary change is the central goal of evolutionary biology because it is the primary means by which we can test evolutionary hypotheses. In this article, we analyze the pattern of evolutionary change in a laboratory population of the wing-dimorphic sand cricket Gryllus firmus resulting from relaxation of selection favoring the migratory (long-winged) morph. Based on a well-characterized trade-off between fecundity and flight capability, we predict that evolution in the laboratory environment should result in a reduction in the proportion of long-winged morphs.
View Article and Find Full Text PDFMale genital morphology in insects and arachnids is characterized by static hypoallometry and low intrapopulational levels of phenotypic variation relative to other male traits. The one-size-fits-all model of genital evolution attributes these patterns to stabilizing sexual selection. This model relies on the assumption that the observed patterns of variation and allometry reflect the form of sexual selection acting these traits.
View Article and Find Full Text PDFA prominent interspecific pattern of sexual size dimorphism (SSD) is Rensch's rule, according to which male body size is more variable or evolutionarily divergent than female body size. Assuming equal growth rates of males and females, SSD would be entirely mediated, and Rensch's rule proximately caused, by sexual differences in development times, or sexual bimaturism (SBM), with the larger sex developing for a proportionately longer time. Only a subset of the seven arthropod groups investigated in this study exhibits Rensch's rule.
View Article and Find Full Text PDFWithin any given clade, male size and female size typically covary, but male size often varies more than female size. This generates a pattern of allometry for sexual size dimorphism (SSD) known as Rensch's rule. I use allometry for SSD among populations of the water strider Aquarius remigis (Hemiptera, Gerridae) to test the hypothesis that Rensch's rule evolves in response to sexual selection on male secondary sexual traits and an alternative hypothesis that it is caused by greater phenotypic plasticity of body size in males.
View Article and Find Full Text PDFMate search plays a central role in hypotheses for the adaptive significance of extreme female-biased sexual size dimorphism (SSD) in animals. Spiders (Araneae) are the only free-living terrestrial taxon where extreme SSD is common. The "gravity hypothesis" states that small body size in males is favoured during mate search in species where males have to climb to reach females, because body length is inversely proportional to achievable speed on vertical structures.
View Article and Find Full Text PDFMales of some cannibalistic species of spiders and insects appear to sacrifice themselves by allowing the female to eat them, and the adaptive significance of such drastic terminal reproductive investment has recently been demonstrated for a spider. Typically, the female has to kill the male, but it has been suggested that males of some species in the cannibalistic orb-weaving spider genus Argiope may die in copula without female 'collaboration'. Here, we provide the first experimental evidence to our knowledge of programmed sudden death after onset of copulation in males of the spider Argiope aurantia.
View Article and Find Full Text PDFThe relationship between mating success and paternity success is a key component of sexual selection but has seldom been estimated for species in which both sexes mate with many partners (polygynandry). We used a modification of Parker's sterile male technique to measure this relationship for the water strider Aquarius remigis in 47 laboratory populations simulating natural conditions of polygynandry. We also tested the hypothesis that prolonged copulation, a characteristic of this species, enhances paternity success.
View Article and Find Full Text PDFThe concept of phenotypic trade-offs is a central element in evolutionary theory. In general, phenotypic models assume a fixed trade-off function, whereas quantitative genetic theory predicts that the trade-off function will change as a result of selection. For a linear trade-off function selection will readily change the intercept but will have to be relatively stronger to change the slope.
View Article and Find Full Text PDFPhenotypic characters may covary negatively because they are in a trade-off or positively because they contribute to a single function. Genetic correlations can be used to test the validity and generality of these functional relationships by indicating the level of genetic integration and checking the conditions under which they are expressed. Phenotypic correlations indicate that there is a widespread trade-off between flight capability and early fecundity in insects.
View Article and Find Full Text PDFMany traits are phenotypically discrete but polygenically determined. Such traits can be understood using the threshold model of quantitative genetics that posits a continuously distributed underlying trait, called the liability, and a threshold of response, individuals above the threshold displaying one morph and individuals below the threshold displaying the alternate morph. For many threshold traits the liability probably consists of a hormone or a suite of hormones.
View Article and Find Full Text PDFDarwin's fecundity advantage model is often cited as the cause of female biased size dimorphism, however, the empirical studies of lifetime selection on male and female body size that would be required to demonstrate this are few. As a component of a study relating sexual size dimorphism to lifetime selection in natural populations of the female size-biased waterstrider Aquarius remigis (Hemiptera: Gerridae), we estimated coefficients for daily fecundity selection, longevity selection, and lifetime fecundity selection acting on female body size and components of body size for two consecutive generations. Daily fecundity was estimated using females confined in field enclosures and reproductive survival was estimated by twice-weekly recaptures.
View Article and Find Full Text PDFThe general female bias in body size of animals is usually attributed to fecundity selection. While many studies have demonstrated a positive relationship between body size and fecundity, the most common interpretation of fecundity selection is that larger females have larger abdomens and can hold more eggs, yet the relationship between abdomen size and fecundity has rarely been examined. For the waterstrider, Aquarius remigis, we find a significant relationship between body size and fecundity and demonstrate that the target of fecundity selection is abdomen size.
View Article and Find Full Text PDFWe artificially selected for body size in Drosophila melanogaster to test Lande's quantitative genetic model for the evolution of sexual size dimorphism. Thorax width was used as an estimator of body size. Selection was maintained for 21 generations in both directions on males only, females only, or both sexes simultaneously.
View Article and Find Full Text PDFSexual size dimorphism (SSD) is often attributed to sexual selection, particularly when males are the larger sex. However, sexual selection favoring large males is common even in taxa where females are the larger sex, and is therefore not a sufficient explanation of patterns of SSD. As part of a more extensive study of the evolution of SSD in water striders (Heteroptera, Gerridae), we examine patterns of sexual selection and SSD in 12 populations of Aquarius remigis.
View Article and Find Full Text PDF