Publications by authors named "Daphne Chien"

Animal venoms, distinguished by their unique structural features and potent bioactivities, represent a vast and relatively untapped reservoir of therapeutic molecules. However, limitations associated with extracting or expressing large numbers of individual venoms and venom-like molecules have precluded their therapeutic evaluation via high throughput screening. Here, we developed an innovative computational approach to design a highly diverse library of animal venoms and "metavenoms".

View Article and Find Full Text PDF

The phosphate modification of drugs is a common chemical strategy to increase solubility and allow for parenteral administration. Unfortunately, phosphate modifications often elicit treatment- or dose-limiting pruritus through an unknown mechanism. Using unbiased high-throughput drug screens, we identified the Mas-related G protein-coupled receptor X4 (MRGPRX4), a primate-specific, sensory neuron receptor previously implicated in itch, as a potential target for phosphate-modified compounds.

View Article and Find Full Text PDF

Pruritus in the setting of cholestatic liver disease is difficult to treat and occurs in patients ranging in age from infancy to adulthood. Likely multifactorial in etiology, this symptom often involves multimodal therapy targeting several pathways and mechanisms proposed in the underlying etiology of cholestatic pruritus. Many patients in both the pediatric and adult populations continue to experience unrelenting pruritus despite maximal conventional therapy.

View Article and Find Full Text PDF

Unlabelled: IsoBAs, stereoisomers of primary and secondary BAs, are found in feces and plasma of human individuals. BA signaling via the nuclear receptor FXR is crucial for regulation of hepatic and intestinal physiology/pathophysiology.

Aim: Investigate the ability of BA-stereoisomers to bind and modulate FXR under physiological/pathological conditions.

View Article and Find Full Text PDF

Background: Mas gene-related G protein-coupled receptors (MRGPRs) are a G protein-coupled receptor family responsive to various exogenous and endogenous agonists, playing a fundamental role in pain and itch sensation. The primate-specific family member MRGPRX2 and its murine orthologue MRGPRB2 are expressed by mast cells mediating IgE-independent signaling and pseudoallergic drug reactions.

Objectives: Our aim was to increase knowledge about the function and regulation of MRGPRX2/MRGPRB2, which is of major importance in prevention of drug hypersensitivity reactions and drug-induced pruritus.

View Article and Find Full Text PDF