Publications by authors named "Daoyuan Chen"

Alzheimer's disease (AD) is distinguished by amyloid-β (Aβ) deposition and plaque formation, prompting significant interest in fluorescence imaging and photooxidation of Aβ aggregates for diagnostic and intervention purposes. However, the molecular engineering required to modulate fluorescence imaging and photooxidation of Aβ presents notable challenges. Here, we present the design of four small molecules (BTD-SZ, BTD-YD, BTD-TA-SZ, and BTD-TA-YD) aimed at investigating the influence of intramolecular freedom of movement on imaging and photooxidation.

View Article and Find Full Text PDF
Article Synopsis
  • Pyroglutamate-modified amyloid-β peptides (pEAβ) are key players in the development of Alzheimer's disease, forming oligomers and amyloid fibrils that contribute to plaque formation.
  • The antibiotic cyclopeptide tyrocidine A (TA) has been shown to inhibit Aβ aggregation and interact with pEAβ to preserve its disordered structure, preventing the formation of harmful oligomers.
  • TA not only blocks initial aggregation but also disrupts pEAβ's catalytic role in accelerating amyloid aggregation, suggesting its potential as a therapeutic option for Alzheimer's disease.
View Article and Find Full Text PDF

Optical waveguides fabricated in single crystals offer crucial passive/active optical components for photonic integrated circuits. Single crystals possess inherent advantages over their amorphous counterpart, such as lower optical losses in visible-to-mid-infrared band, larger peak emission cross-section, higher doping concentration. However, the writing of Type-I positive refractive index modified waveguides in single crystals using femtosecond laser technology presents significant challenges.

View Article and Find Full Text PDF

Afatinib (AT), an FDA-approved aniline-quinazoline derivative, is a first-line treatment for metastatic non-small cell lung cancer (NSCLC). Combining it with cetuximab (CX), a chimeric human-murine derivative immunoglobulin-G1 monoclonal antibody (mAb) targeting the extracellular domain of epidermal growth factor receptor (EGFR), has shown significant improvements in median progression-free survival. Previously, we developed cetuximab-conjugated immunoliposomes loaded with afatinib (AT-MLP) and demonstrated their efficacy against NSCLC cells (A549 and H1975).

View Article and Find Full Text PDF

Metal halide perovskite (MHP) structures that exhibit polarized photoluminescence (PL) have attracted significant interest in fabricating light field regulation elements for display, imaging, and information storage applications. We report a three-dimensional direct lithography of heterostructures for controllable polarized PL inside glass by laser-induced localized temperature engineering. The heterostructures consisted of oriented periodic structures (OPSs) and MHP nanocrystals, and the mechanism for hierarchical distribution of heterostructures was illustrated.

View Article and Find Full Text PDF

High-gain materials and high-quality structures are the two main conditions that determine the amplification performance of optical waveguides. However, it has been hard to balance each other, to date. In this work, we demonstrate breakthroughs in both glass optical gain and optical waveguide structures.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder for which the underlying causes remain largely unknown. Therefore, the development of imaging agents capable of detecting biomarkers associated with this disease is crucial. Dual-functional probes are particularly important as they can track two biomarkers at the same time and examine their interaction.

View Article and Find Full Text PDF

Cyclic GMP-AMP synthase (cGAS) is an essential sensor of aberrant cytosolic DNA for initiating innate immunity upon invading pathogens and cellular stress, which is considered as a potential drug target for autoimmune and autoinflammatory diseases. Here, we report the discovery of a class of cyclopeptide inhibitors of cGAS identified by an in vitro screening assay from a focused library of cyclic peptides. These cyclopeptides specifically bind to the DNA binding site of cGAS and block the binding of dsDNA with cGAS, subsequently inhibit dsDNA-induced liquid phase condensation and activation of cGAS.

View Article and Find Full Text PDF

Human glutaminyl cyclase (hQC) is drawing considerable attention and emerging as a potential druggable target for Alzheimer's disease (AD) due to its close involvement in the pathology of AD via the post-translational pyroglutamate modification of amyloid-β. A recent phase 2a study has shown promising early evidence of efficacy for AD with a competitive benzimidazole-based QC inhibitor, PQ912, which also demonstrated favorable safety profiles. This finding has sparked new hope for the treatment of AD.

View Article and Find Full Text PDF

Triptorelin is a first-line drug for assisted reproductive technology (ART), but the low bioavailability and frequent subcutaneous injection of triptorelin impair the quality of life of women preparing to become pregnant. We report silk fibroin (SF)-based microneedles (MNs) for transdermal delivery of triptorelin-loaded nanoparticles (NPs) to improve bioavailability and achieve safe and efficacious self-administration of triptorelin. Triptorelin was mixed into an aqueous solution of SF with shear force to prepare NPs to control the release and avoid the degradation of triptorelin by enzymes in the skin.

View Article and Find Full Text PDF

One of the main reasons impeding wound healing is wound infection caused by bacterial colonization with a continuous stage of inflammation. Traditional wound treatments like gauze are being replaced by tissue adhesives with strong wet tissue adhesion and biocompatibility. Herein, a fast-crosslinking hydrogel is developed to achieve both strong antimicrobial properties and excellent biocompatibility.

View Article and Find Full Text PDF

Nanoparticle drug delivery systems have proved anti-tumor effects; however, they are not widely used in tumor therapy due to insufficient ability to target specific sites, multidrug resistance to anti-tumor drugs, and the high toxicity of the drugs. With the development of RNAi technology, nucleic acids have been delivered to target sites to replace or correct defective genes or knock down specific genes. Also, synergistic therapeutic effects can be achieved for combined drug delivery, which is more effective for overcoming multidrug resistance of cancer cells.

View Article and Find Full Text PDF

Inscription of fiber-compatible active waveguides in high-gain glass, followed by direct interconnection with few-mode fibers, is one of the most promising solutions for all-optical mode-division multiplexing. In this work, based on the femtosecond laser writing technique, we propose a general fabrication scheme for inscribing high-order mode waveguides in glass, by carefully tailoring the cross-section of the waveguides to match the mode intensity distribution via an improved multi-scan approach. Specifically, we design and fabricate two kinds of waveguides, namely, LP-mode waveguide and LP-mode waveguide in a highly Er-doped phosphate glass, enabling the insertion loss of the waveguides to be as low as 1.

View Article and Find Full Text PDF

A novel hyaluronic acid (HA)-modified hybrid nanocomplex HA-SeSe-COOH/siR-93C@PAMAM, which could efficiently deliver siRNA into tumor cells via a redox-mediated intracellular disassembly, was constructed for enhanced antitumor efficacy. Thereinto, siR-93C (siRNA) and positive PAMAM were firstly mixed into the electrostatic nano-intermediate, and then diselenide bond (-SeSe-)-modified HA was coved to shield excessive positive charges. This hybrid nanocomplex displayed uniform dynamic sizes, high stability, controlled zeta potential and narrow PDI distribution.

View Article and Find Full Text PDF

Surface charge of biological and medical nanocarriers has been demonstrated to play an important role in cellular uptake. Owing to the unique physicochemical properties, charge-reversal delivery strategy has rapidly developed as a promising approach for drug delivery application, especially for cancer treatment. Charge-reversal nanocarriers are neutral/negatively charged at physiological conditions while could be triggered to positively charged by specific stimuli (i.

View Article and Find Full Text PDF

A double-layer silk fibroin microneedles (SF-MNs) was proposed for the transdermal delivery of triptorelin. Two-step pouring and centrifugation were employed to prepare SF-MNs. Triptorelin was wrapped in MNs in the form of microcrystals with a size of ∼1 μm.

View Article and Find Full Text PDF

With the rapid growth of large-scale knowledge bases (KBs), knowledge base question answering (KBQA) has attracted increasing attention recently. Relation detection plays an important role in the KBQA system, which finds a compatible answer by analyzing the semantics of questions and querying and reasoning with multiple KB triples. Significant progress has been made by deep neural networks.

View Article and Find Full Text PDF

In order to study the dynamic mechanical properties of styrene-acrylic latex with a core/shell structure, a variety of latexes were synthesized by semi-continuous seeded emulsion polymerization based on "particle design" with the same material. The latexes were characterized by rotary viscosimeter, dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), dynamic mechanical analysis (DMA), and universal testing machine. The effects of difference at the glass transition temperature () of core and shell and the introduction of the "transition layer" on the damping and mechanical properties of latex film were studied.

View Article and Find Full Text PDF

Blockade of immune checkpoint PD-1/PD-L1 facilitates the rescue of immune escapes of tumor cells. Though various monoclonal antibodies have been approved for clinical therapy, the development of small molecular inhibitors lags behind antibodies partially owing to the challenges of protein-protein interaction (PPI) blocker design. In this work, we adopted the skeleton of natural cyclopeptidic antibiotics gramicidin S as the start point for PD-1/PD-L1 inhibitor exploring and discovered a series of novel cyclopeptides that could interfere with the PPI of PD-1/PD-L1 based on several rounds of structural design and optimization.

View Article and Find Full Text PDF

Raloxifene, a selective estrogen receptor modulator, displays benefits for Alzheimer's disease (AD) prevention in postmenopausal women as hormonal changes during menopause have the potential to influence AD pathogenesis, but the underlying mechanism of its neuroprotection is not entirely clear. In this study, the effects of raloxifene on amyloid-β (Aβ) amyloidogenesis were evaluated. The results demonstrated that raloxifene inhibits Aβ aggregation and destabilizes preformed Aβ fibrils through directly interacting with the N-terminus and middle domains of Aβ peptides.

View Article and Find Full Text PDF

A novel fused perylene diimide (PDI)-based polymer electron acceptor (PFPDI-BDF) with a built-in twisting configuration was constructed for application in all-polymer solar cells (all-PSCs). To shed light on the compatibility of the FPDI polymer acceptor and to identify a suitable polymer donor for device applications, we considered herein to investigate three polymer donors (PBDB-T, PTB7-Th, and PCPDTFBT) with different optical and electronic properties as well as polymer chain packing behavior for comparing the device performance. After being fabricated with PFPDI-BDF, polymer donor PBDB-T with a wide band gap showed a decent power conversion efficiency (PCE) of 4.

View Article and Find Full Text PDF

Background: Entropy has become increasingly popular in computer science and information theory because it can be used to measure the predictability and redundancy of knowledge bases, especially ontologies. However, current entropy applications that evaluate ontologies consider only single-point connectivity rather than path connectivity, and they assign equal weights to each entity and path.

Results: We propose an Entropy-Aware Path-Based (EAPB) metric for ontology quality by considering the path information between different vertices and textual information included in the path to calculate the connectivity path of the whole network and dynamic weights between different nodes.

View Article and Find Full Text PDF

Background: The available antibiotic decision-making systems were developed from a physician's perspective. However, because infectious diseases are common, many patients desire access to knowledge via a search engine. Although the use of antibiotics should, in principle, be subject to a doctor's advice, many patients take them without authorization, and some people cannot easily or rapidly consult a doctor.

View Article and Find Full Text PDF

The intrinsic haemolysis of an amyloid-β (Aβ) N-terminal targeting gramicidin S derivative was successfully dissociated from its Aβ oligomer-preventing activities via Ala-scanning-based regulation of molecular amphiphilicity. The representative analogue DGR-7 shows low toxicity but significant efficiency in preventing Aβ oligomers and reducing amyloid plaques in APP/PS1 transgenic AD mice.

View Article and Find Full Text PDF