Publications by authors named "Daoyang Chen"

C10orf90, a tumor suppressor, can inhibit the occurrence and development of tumors. Therefore, we investigated the gene function of in various tumors using multiple pan-cancer datasets. Pan-cancer analysis results reveal that the expression levels of vary across different tumors and hold significant value in the clinical diagnosis and prognosis of patients with various tumors.

View Article and Find Full Text PDF

Maternal-to-zygotic transition (MZT) is central to early embryogenesis. However, its underlying molecular mechanisms are still not well described. Here, we revealed the expression dynamics of 5,000 proteins across four stages of zebrafish embryos during MZT, representing one of the most systematic surveys of proteome landscape of the zebrafish embryos during MZT.

View Article and Find Full Text PDF

CircRNAs are a class of endogenous long non-coding RNAs with a single-stranded circular structure. Most circRNAs are relatively stable, highly conserved, and specifically expressed in tissue during the cell and developmental stages. Many circRNAs have been discovered in OSCC.

View Article and Find Full Text PDF

Production of site-specific cysteine-engineered antibody-drug conjugates (ADCs) in mammalian cells may produce developability challenges, fragments, and heterogenous molecules, leading to potential product critical quality attributes in later development stages. Liquid phase chromatography with mass spectrometry (LC-MS) is widely used to evaluate antibody impurities and drug-to-antibody ratio, but faces challenges in analysis of fragment product variants of cysteine-engineered ADCs and oligonucleotide-to-antibody ratio (OAR) species of antibody-oligonucleotide conjugates (AOCs). Here, for the first time, we report novel capillary zone electrophoresis (CZE)-MS approaches to address the challenges above.

View Article and Find Full Text PDF

Capillary zone electrophoresis (CZE) is a fundamentally simple and highly efficient separation technique based on differences in electrophoretic mobilities of analytes. CZE-mass spectrometry (MS) has become an important analytical tool in top-down proteomics which aims to delineate proteoforms in cells comprehensively, because of the improvement of capillary coatings, sample stacking methods, and CE-MS interfaces. Here, we present a CZE-MS/MS-based top-down proteomics procedure for the characterization of a standard protein mixture and an Escherichia coli (E.

View Article and Find Full Text PDF

Defining the denatured state ensemble (DSE) and disordered proteins is essential to understanding folding, chaperone action, degradation, and translocation. As compared with water-soluble proteins, the DSE of membrane proteins is much less characterized. Here, we measure the DSE of the helical membrane protein GlpG of () in native-like lipid bilayers.

View Article and Find Full Text PDF

Large-scale bottom-up proteomics of few even single cells is crucial for a better understanding of the roles played by cell-to-cell heterogeneity in disease and development. Novel proteomic methodologies with extremely high sensitivity are required for few even single-cell proteomics. Sample processing with high recovery and no contaminants is one key step.

View Article and Find Full Text PDF

Multilevel proteomics aims to delineate proteins at the peptide (bottom-up proteomics), proteoform (top-down proteomics), and protein complex (native proteomics) levels. Capillary electrophoresis-mass spectrometry (CE-MS) can achieve highly efficient separation and highly sensitive detection of complex mixtures of peptides, proteoforms, and even protein complexes because of its substantial technical progress. CE-MS has become a valuable alternative to the routinely used liquid chromatography-mass spectrometry for multilevel proteomics.

View Article and Find Full Text PDF

Top-down proteomics (TDP) is an ideal approach for deciphering the histone code and it routinely employs reversed-phase liquid chromatography (RPLC)-tandem mass spectrometry (MS/MS). Because of the extreme complexity of histones regarding the number of proteoforms, new analytical tools with high-capacity separation and highly sensitive detection of proteoforms are required for TDP of histones. Here we present capillary zone electrophoresis (CZE)-MS/MS via the electro-kinetically pumped sheath-flow CE-MS interface for large-scale top-down delineation of histone proteoforms.

View Article and Find Full Text PDF

Native capillary zone electrophoresis-mass spectrometry (CZE-MS) has attracted attentions for the characterization of monoclonal antibodies (mAbs) due to the potential of CZE for highly efficient separations of mAbs under native conditions as well as its compatibility with native electrospray ionization (ESI)-MS. However, the low sample loading capacity and limited separation resolution of native CZE for large proteins and protein complexes ( mAbs) impede the widespread adoption of native CZE-MS. Here, we present a novel native capillary isoelectric focusing (cIEF)-assisted CZE-MS method for the characterization of mAbs with much larger sample loading capacity and significantly better separation resolution than native CZE-MS alone.

View Article and Find Full Text PDF

Top-down proteomics (TDP) aims to delineate proteomes in a proteoform-specific manner, which is vital for accurately understanding protein function in cellular processes. It requires high-capacity separation of proteoforms before mass spectrometry (MS) and tandem MS (MS/MS). Capillary isoelectric focusing (cIEF)-MS has been recognized as a useful tool for TDP in the 1990s because cIEF is capable of high-resolution separation of proteoforms.

View Article and Find Full Text PDF

A universal and standardized sample preparation method becomes vital for denaturing top-down proteomics (dTDP) to advance the scale and accuracy of proteoform delineation in complex biological systems. It needs to have high protein recovery, minimum bias, good reproducibility, and compatibility with downstream mass spectrometry (MS) analysis. Here, we employed a lysis buffer containing sodium dodecyl sulfate for extracting proteoforms from cells and, for the first time, compared membrane ultrafiltration (MU), chloroform-methanol precipitation (CMP), and single-spot solid-phase sample preparation using magnetic beads (SP3) for proteoform cleanup for dTDP.

View Article and Find Full Text PDF

Large-scale top-down proteomics characterizes proteoforms in cells globally with high confidence and high throughput using reversed-phase liquid chromatography (RPLC)-tandem mass spectrometry (MS/MS) or capillary zone electrophoresis (CZE)-MS/MS. The false discovery rate (FDR) from the target-decoy database search is typically deployed to filter identified proteoforms to ensure high-confidence identifications (IDs). It has been demonstrated that the FDRs in top-down proteomics can be drastically underestimated.

View Article and Find Full Text PDF

Novel mass spectrometry (MS)-based proteomic tools with extremely high sensitivity and high peak capacity are required for comprehensive characterization of protein molecules in mass-limited samples. We reported a nanoRPLC-CZE-MS/MS system for deep bottom-up proteomics of low micrograms of human cell samples in previous work. In this work, we improved the sensitivity of the nanoRPLC-CZE-MS/MS system drastically via employing bovine serum albumin (BSA)-treated sample vials, improving the nanoRPLC fraction collection procedure, and using a short capillary for fast CZE separation.

View Article and Find Full Text PDF

Capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) has attracted attention recently for large-scale top-down proteomics that aims to characterize proteoforms in cells at a global scale and with high throughput. In this work, CZE-MS/MS with ultraviolet photodissociation (UVPD) was evaluated for large-scale top-down proteomics for the first time. Roughly, 600 proteoforms and 369 proteins were identified from a zebrafish brain sample via coupling size exclusion chromatography (SEC) fractionation to CZE-UVPD.

View Article and Find Full Text PDF

Mass spectrometry (MS)-based top-down proteomics characterizes complex proteomes at the intact proteoform level and provides an accurate picture of protein isoforms and protein post-translational modifications in the cell. The progress of top-down proteomics requires novel analytical tools with high peak capacity for proteoform separation and high sensitivity for proteoform detection. The requirements have made capillary zone electrophoresis (CZE)-MS an attractive approach for advancing large-scale top-down proteomics.

View Article and Find Full Text PDF

Attapulgite nanoparticles have good chemical properties and can be modified easily for broad applications. In this work, for the first time, attapulgite nanoparticles were employed to modify the inner wall of separation capillaries for capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS)-based top-down proteomics. The attapulgite nanoparticles and the inner wall of a fused silica capillary were first functionalized with γ-methacryloxypropyl trimethoxysilane.

View Article and Find Full Text PDF

Phosphoproteomics requires better separation of phosphopeptides to boost the coverage of the phosphoproteome. We argue that an alternative separation method that produces orthogonal phosphopeptide separation to the widely used LC needs to be considered. Capillary zone electrophoresis (CZE) is one important alternative because CZE and LC are orthogonal for phosphopeptide separation and because the migration time of peptides in CZE can be accurately predicted.

View Article and Find Full Text PDF

Capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) has been well recognized for bottom-up proteomics. It has approached 4000-8000 protein identifications (IDs) from a human cell line, mouse brains, or Xenopus embryos via coupling with liquid chromatography (LC) prefractionation. However, at least 500 μg of complex proteome digests were required for the LC/CZE-MS/MS studies.

View Article and Find Full Text PDF

Native proteomics aims to characterize complex proteomes under native conditions and ultimately produces a full picture of endogenous protein complexes in cells. It requires novel analytical platforms for high-resolution and liquid-phase separation of protein complexes prior to native mass spectrometry (MS) and MS/MS. In this work, size-exclusion chromatography (SEC)-capillary zone electrophoresis (CZE)-MS/MS was developed for native proteomics in discovery mode, resulting in the identification of 144 proteins, 672 proteoforms, and 23 protein complexes from the Escherichia coli proteome.

View Article and Find Full Text PDF

MicroRNA (miRNA) in urine has been considered as a potential biomarker for early-stage diagnosis of multiple diseases like urinary system cancer, kidney injury and diabetes, owing to their many demonstrated advantages including long-term stability and noninvasiveness. However, the traditional enrichment and extraction processes of miRNAs from urine are cumbersome and tedious due to the low concentration and multiple carriers of miRNAs. Herein, we present a novel method to collect low concentrations of miRNAs from dilute solutions such as urine and cell culture medium.

View Article and Find Full Text PDF

Capillary zone electrophoresis (CZE)-tandem mass spectrometry (MS/MS) has been recognized as a useful tool for top-down proteomics. However, its performance for deep top-down proteomics is still dramatically lower than widely used reversed-phase liquid chromatography (RPLC)-MS/MS. We present an orthogonal multidimensional separation platform that couples size exclusion chromatography (SEC) and RPLC based protein prefractionation to CZE-MS/MS for deep top-down proteomics of Escherichia coli.

View Article and Find Full Text PDF

Two-dimensional (2D) liquid chromatography (LC)-tandem mass spectrometry (MS/MS) are typically employed for deep bottom-up proteomics, and the state-of-the-art 2D-LC-MS/MS has approached over 8000 protein identifications (IDs) from mammalian cell lines or tissues in 1-3 days of mass spectrometer time. Capillary zone electrophoresis (CZE)-MS/MS has been suggested as an alternative to LC-MS/MS for bottom-up proteomics. CZE-MS/MS and LC-MS/MS are complementary in protein/peptide ID from complex proteome digests because CZE and LC are orthogonal for peptide separation.

View Article and Find Full Text PDF

Better peptide separation is required for bottom-up proteomics for further improving the proteome coverage. The two-dimensional liquid chromatography (2D-LC) systems only explore differences among peptides in their hydrophobicity (reversed-phase, RP) and charge (strong cation/anion exchange, SCX/SAX). Alternative separation techniques with different separation mechanisms are required to further improve the separation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionf77uvht1nr7jrfdiill73ebgnm57kmpk): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once