Dimerization reactions play a critical role in various fields of research, including cell biology, biomedicine, and chemistry. In particular, the dimerization reaction of 2NO⇌NO has been extensively applied in pollution control and raw material preparation. Spectroscopy, as a powerful tool for investigating molecular structures and reaction kinetics, has been increasingly employed to study dimerization reactions in recent years.
View Article and Find Full Text PDFOptical activity (OA) spectroscopy is a powerful tool to characterize molecular chirality, explore the stereo-specific structure and study the solution-state conformation of biomolecules, which is widely utilized in the fields of molecular chirality, pharmaceutics and analytical chemistry. Due to the considerably weak effect, OA spectral analysis has high demands on measurement speed and sensitivity, especially for organic biomolecules. Moreover, gas-phase OA measurements require higher resolution to resolve Doppler-limited profiles.
View Article and Find Full Text PDFDual-comb spectroscopy (DCS) is a powerful spectroscopic technique, which is developing for the detection of transient species in reaction kinetics on a short time scale. Conventionally, the simultaneous determination of multiple species is limited to the requirement of broadband spectral measurement at the cost of the measurement speed and spectral resolution owing to the inherent trade-off among these characteristics in DCS. In this study, a high-speed multi-molecular sensing is demonstrated and achieved through using a programmable spectrum-encoded DCS technique, where multiple narrow encoding spectral bands are reserved selectively and other comb lines are filtered out.
View Article and Find Full Text PDFCoherent pulse synthesis in the mid-infrared (mid-IR) domain is of great interest to achieve broadband sources from parent pulses, motivated by the advantages of optical frequency properties for molecular spectroscopy and quantum dynamics. We demonstrate a simple mid-IR coherent synthesizer based on two high-repetition-rate optical parametric amplifiers (OPAs) at nJ-level pump energy. The relative carrier envelope phase between the two OPAs was passively stable for a shared continuous wave (CW) quantum cascade laser (QCL) seed.
View Article and Find Full Text PDFWe demonstrate an effective method to obtain high-repetition-rate femtosecond mid-infrared (mid-IR) pulses by nonlinear optical modulation of mid-IR continuous-wave (CW) quantum and interband cascade lasers (ICLs and QCLs). In the experiment, a high-repetition-rate femtosecond ytterbium-doped fiber laser with nanojoule-level pulse energy was used as the pump source of optical parametric amplifiers to modulate and amplify the mid-IR CW laser. Near transform-limited 84 fs duration (7.
View Article and Find Full Text PDF