Wastewater-based surveillance (WBS) is increasingly used for monitoring disease targets in wastewaters around the world. This study, performed in Ottawa, Canada, identifies a decrease in SARS-CoV-2 wastewater measurements during snowmelt-induced sewer flushing events. Observations first revealed a correlation between suppressed viral measurements and periods of increased sewage flowrates, air temperatures above 0 °C during winter months, and solids mass flux increases.
View Article and Find Full Text PDFWastewater-based surveillance of human disease offers timely insights to public health, helping to mitigate infectious disease outbreaks and decrease downstream morbidity and mortality. These systems rely on nucleic acid amplification tests for monitoring disease trends, while antibody-based seroprevalence surveys gauge community immunity. However, serological surveys are resource-intensive and subject to potentially long lead times and sampling bias.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2024
Wastewater surveillance (WWS) of SARS-CoV-2 has become a crucial tool for monitoring COVID-19 cases and outbreaks. Previous studies have indicated that SARS-CoV-2 RNA measurement from testing solid-rich primary sludge yields better sensitivity compared to testing wastewater influent. Furthermore, measurement of pepper mild mottle virus (PMMoV) signal in wastewater allows for precise normalization of SARS-CoV-2 viral signal based on solid content, enhancing disease prevalence tracking.
View Article and Find Full Text PDFThe p-symmetry of the hole wavefunction is associated with a weaker hyperfine interaction, which makes hole spin qubits attractive candidates to implement quantum processors. However, recent studies demonstrate that hole qubits are still very sensitive to nuclear spin bath, thus highlighting the need for nuclear spin-free germanium (Ge) qubits to suppress this decoherence channel. Herein, this work demonstrates the epitaxial growth of Ge- and Si-depleted, isotopically enriched Ge/silicon-germanium (SiGe) quantum wells.
View Article and Find Full Text PDFIntroduction: Detection of community respiratory syncytial virus (RSV) infections informs the timing of immunoprophylaxis programs and hospital preparedness for surging pediatric volumes. In many jurisdictions, this relies upon RSV clinical test positivity and hospitalization (RSVH) trends, which are lagging indicators. Wastewater-based surveillance (WBS) may be a novel strategy to accurately identify the start of the RSV season and guide immunoprophylaxis administration and hospital preparedness.
View Article and Find Full Text PDFWe identified by light microscopy micro- and macrogametes and oocysts of renal coccidia in 78 of 220 (35.5%) Northern Gannets (Morus bassanus) from the western North Atlantic population. This infection was not considered clinically significant in any of the affected birds, although the potential effect of this parasite in breeding colonies, particularly among nestlings, is unknown.
View Article and Find Full Text PDFSeal populations in Canadian waters provide sustenance to coastal communities. There is potential for pathogenic and/or antimicrobial-resistant bacteria to transfer to humans through inadvertent faecal contamination of seal products. The objective of this study was to investigate the occurrence and potential antimicrobial resistance of Salmonella spp.
View Article and Find Full Text PDFWastewater-based epidemiology (WBE) has been demonstrated for its great potential in tracking of coronavirus disease 2019 (COVID-19) transmission among populations despite some inherent methodological limitations. These include non-optimized sampling approaches and analytical methods; stability of viruses in sewer systems; partitioning/retention in biofilms; and the singular and inaccurate back-calculation step to predict the number of infected individuals in the community. Future research is expected to (1) standardize best practices in wastewater sampling, analysis and data reporting protocols for the sensitive and reproducible detection of viruses in wastewater; (2) understand the in-sewer viral stability and partitioning under the impacts of dynamic wastewater flow, properties, chemicals, biofilms and sediments; and (3) achieve smart wastewater surveillance with artificial intelligence and big data models.
View Article and Find Full Text PDFThe real-time polymerase chain reaction (PCR), commonly known as quantitative PCR (qPCR), is increasingly common in environmental microbiology applications. During the COVID-19 pandemic, qPCR combined with reverse transcription (RT-qPCR) has been used to detect and quantify SARS-CoV-2 in clinical diagnoses and wastewater monitoring of local trends. Estimation of concentrations using qPCR often features a log-linear standard curve model calibrating quantification cycle () values obtained from underlying fluorescence measurements to standard concentrations.
View Article and Find Full Text PDFRecurrent influenza epidemics and pandemic potential are significant risks to global health. Public health authorities use clinical surveillance to locate and monitor influenza and influenza-like cases and outbreaks to mitigate hospitalizations and deaths. Currently, global integration of clinical surveillance is the only reliable method for reporting influenza types and subtypes to warn of emergent pandemic strains.
View Article and Find Full Text PDFWastewater surveillance (WWS) of SARS-CoV-2 was proven to be a reliable and complementary tool for population-wide monitoring of COVID-19 disease incidence but was not as rigorously explored as an indicator for disease burden throughout the pandemic. Prior to global mass immunization campaigns and during the spread of the wildtype COVID-19 and the Alpha variant of concern (VOC), viral measurement of SARS-CoV-2 in wastewater was a leading indicator for both COVID-19 incidence and disease burden in communities. As the two-dose vaccination rates escalated during the spread of the Delta VOC in Jul.
View Article and Find Full Text PDFClinical testing has been the cornerstone of public health monitoring and infection control efforts in communities throughout the COVID-19 pandemic. With the anticipated reduction of clinical testing as the disease moves into an endemic state, SARS-CoV-2 wastewater surveillance (WWS) will have greater value as an important diagnostic tool. An in-depth analysis and understanding of the metrics derived from WWS is required to interpret and utilize WWS-acquired data effectively (McClary-Gutierrez et al.
View Article and Find Full Text PDFThe COVID-19 pandemic has stimulated wastewater-based surveillance, allowing public health to track the epidemic by monitoring the concentration of the genetic fingerprints of SARS-CoV-2 shed in wastewater by infected individuals. Wastewater-based surveillance for COVID-19 is still in its infancy. In particular, the quantitative link between clinical cases observed through traditional surveillance and the signals from viral concentrations in wastewater is still developing and hampers interpretation of the data and actionable public-health decisions.
View Article and Find Full Text PDFAmid the 2019 coronavirus disease pandemic (COVID-19), the scientific community has a responsibility to provide accessible public health resources within their communities. Wastewater based epidemiology (WBE) has been used to monitor community spread of the pandemic. The goal of this review was to evaluate the need for an environmental justice approach for COVID-19 WBE starting with the state of California in the United States.
View Article and Find Full Text PDFWe measured concentrations of 19 trace elements and mercury speciation in grey seals (Halichoerus grypus) from the Gulf of St. Lawrence (GSL), Canada. With interest growing in commercializing grey seal products for human consumption in this region, our goal was to measure essential and non-essential trace elements in grey seals to evaluate health concerns and nutritional benefits.
View Article and Find Full Text PDFThe purpose of this consensus paper was to convene leaders and scholars from eight Expert Panels of the American Academy of Nursing and provide recommendations to advance nursing's roles and responsibility to ensure universal access to palliative care. Part I of this consensus paper herein provides the rationale and background to support the policy, education, research, and clinical practice recommendations put forward in Part II. On behalf of the Academy, the evidence-based recommendations will guide nurses, policy makers, government representatives, professional associations, and interdisciplinary and community partners to integrate palliative nursing services across health and social care settings.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed millions of lives to date. Antigenic drift has resulted in viral variants with putatively greater transmissibility, virulence, or both. Early and near real-time detection of these variants of concern (VOC) and the ability to accurately follow their incidence and prevalence in communities is wanting.
View Article and Find Full Text PDFWastewater-based epidemiology/wastewater surveillance has been a topic of significant interest over the last year due to its application in SARS-CoV-2 surveillance to track prevalence of COVID-19 in communities. Although SARS-CoV-2 surveillance has been applied in more than 50 countries to date, the application of this surveillance has been largely focused on relatively affluent urban and peri-urban communities. As such, there is a knowledge gap regarding the implementation of reliable wastewater surveillance in small and rural communities for the purpose of tracking rates of incidence of COVID-19 and other pathogens or biomarkers.
View Article and Find Full Text PDFDetection of SARS-CoV-2 RNA in wastewater is a promising tool for informing public health decisions during the COVID-19 pandemic. However, approaches for its analysis by use of reverse transcription quantitative polymerase chain reaction (RT-qPCR) are still far from standardized globally. To characterize inter- and intra-laboratory variability among results when using various methods deployed across Canada, aliquots from a real wastewater sample were spiked with surrogates of SARS-CoV-2 (gamma-radiation inactivated SARS-CoV-2 and human coronavirus strain 229E [HCoV-229E]) at low and high levels then provided "blind" to eight laboratories.
View Article and Find Full Text PDFThe Northern Gannet (Morus bassanus) is a large marine bird whose whole North American population breeds in waters of eastern Canada. Opportunities to identify causes of morbidity and mortality in recently hatched birds of this species are therefore limited to this region of North America. During the three decades since 1990 of wildlife health surveillance at the Atlantic regional center of the Canadian Wildlife Health Cooperative, what appears to be a previously undescribed syndrome of ischemic leg necrosis affecting mainly hatch-year Northern Gannets has emerged, which may relate to some unique aspects of the life history of these birds.
View Article and Find Full Text PDFMarine birds are frequently found dead on beaches, either from natural or from anthropogenic causes. Complete necropsies of those carcasses can provide valuable information, particularly for pelagic species, such as Northern Fulmars (Fulmarus glacialis) and shearwaters, which come to land only to breed and for which information on diseases that may affect them is, therefore, sparse. Between 2000 and 2012, 315 carcasses of four species of Procellariiformes (173 Northern Fulmars, 89 Great Shearwaters [Ardenna gravis], 50 Sooty Shearwaters [Ardenna grisea], and three Cory's Shearwaters [Calonectris diomedea]) were collected on Sable Island, Nova Scotia, Canada, an isolated island near the edge of the continental shelf.
View Article and Find Full Text PDF