Publications by authors named "Daotan Liu"

Food safety has emerged as a paramount concern in global health, prompting innovative approaches to ensure the safety of people's sustenance. In this study, a novel strategy was devised to fabricate FeO-ZnO-MnO hybrid nanobiocatalysts, which exhibited remarkable enzymatic activity surpassing that of Horseradish peroxidase (HRP) catalysis. It demonstrated exceptional proficiency in decomposing 3,3',5,5'-tetramethylbenzidine (TMB) without the need for harsh reaction conditions or the aid of HO.

View Article and Find Full Text PDF

In this study, a new method for the detection of ascorbic acid (AA) was proposed. It was based on the protective effect of AA on silver triangular nanoplates (Ag TNPs) against Cl induced etching reactions. Cl can attack the corners of Ag TNPs and etch them, causing a morphological shift from triangular nanoplates to nanodiscs.

View Article and Find Full Text PDF

Silicon (Si) has been regarded as a promising high-capacity anode material for developing advanced lithium-ion batteries (LIBs), but the practical application of Si anodes is still unsuccessful mainly due to the insufficient cyclability. To deal with this issue, we propose a new route to construct a dual core-shell structured Si@SiO@C nanocomposite by direct pyrolysis of poly(methyl methacrylate) (PMMA) polymer on the surface of Si nanoparticles. Since the PMMA polymers can be chemically bonded on the nano-Si surface through the interaction between ester group and Si surface group, and thermally decomposed in the subsequent pyrolysis process with their alkyl chains converted to carbon and the residue oxygen recombining with Si to form SiO, the dual core-shell structure can be conveniently formed in a one-step procedure.

View Article and Find Full Text PDF

An empirical method based on chemical bond theory for the estimation of the lattice energy for ionic crystals has been proposed. The lattice energy contributions have been partitioned into bond dependent terms. For an individual bond, the lattice energy contribution made by it has been separated into ionic and covalent parts.

View Article and Find Full Text PDF