Publications by authors named "Daoqian Yu"

Ethylene affects many aspects of plant growth and development, including root hairs and trichomes growth in Arabidopsis, as well as fiber development in cotton, though the underlying mechanism is unclear. In this article, we update the research progress associated with the main genes in ethylene biosynthesis and signaling pathway, and we propose a clear ethylene pathway based on genome-wide identification of homologues in cotton. Expression pattern analysis using transcriptome data revealed that some candidate genes may contribute to cotton fiber development through the ethylene pathway.

View Article and Find Full Text PDF

Background: GGPP (geranylgeranyl diphosphate) is produced in the isoprenoid pathway and mediates the function of various plant metabolites, which is synthesized by GGPPS (GGPP synthases) in plants. GGPPS characterization has not been performed in any plant species except Arabidopsis thaliana. Here, we performed a complete computational and bioinformatics analysis of GGPPS and detected their transcription expression pattern in Gossypium hirsutum for the first time so that to explore their evolutionary relationship and potential functions.

View Article and Find Full Text PDF

Pectin is a major polysaccharide component that promotes plant growth and fiber elongation in cotton. In previous studies, the galacturonosyltransferase-like (GATL) gene family has been shown to be involved in pectin synthesis. However, few studies have been performed on cotton genes.

View Article and Find Full Text PDF

RB-GRP (RNA-binding Glycine-rich protein gene) family belongs to the fourth subfamily of the GRP (Glycine-rich protein gene) superfamily, which plays a great role in plant growth and development, as well as in abiotic stresses response, while it has not been identified in cotton. Here, we identified 37 and 32 RB-GRPs from two cotton species (Gossypium arboreum and Gossypium raimondii, respectively), which were divided into four distinct subfamilies based on the presence of additional motifs and the arrangement of the glycine repeats. The distribution of RB-GRPs was nonrandom and uneven among the chromosomes both in two cotton species.

View Article and Find Full Text PDF

Plants undergo a phase transition from vegetative to reproductive development that triggers floral induction. Genes containing an AAI (α-amylase inhibitor) domain form a large gene family, but there have been no comprehensive analyses of this gene family in any plant species. Here, we identified 336 AAI genes from nine plant species including122 AAI genes in cotton (Gossypium hirsutum).

View Article and Find Full Text PDF

Proline-rich extensin-like receptor kinases () are an important class of receptor kinases in plants. Receptor kinases comprise large gene families in many plant species, including the 15 genes in . At present, there is no comprehensive published study of genes in .

View Article and Find Full Text PDF

Cotton fiber initiation is the first step in fiber development, and it determines the yield. Here, genome-wide transcriptome profiling of Gossypium arboreum was performed to determine the molecular basis of cotton fiber initiation. A comparison of the transcriptomes of fiber-bearing ovules at -0.

View Article and Find Full Text PDF

Cyclophilins (CYPs) are a member of the immunophilin superfamily (in addition to FKBPs and parvulins) and play a significant role in peptidyl-prolyl - isomerase (PPIase) activity. Previous studies have shown that CYPs have important functions in plants, but no genome-wide analysis of the cotton gene family has been reported, and the specific biological function of this gene is still elusive. Based on the release of the cotton genome sequence, we identified 75, 78, 40 and 38 gene sequences from , , , and , respectively; 221 genes were unequally located on chromosomes.

View Article and Find Full Text PDF

Background: Auxin-induced genes regulate many aspects of plant growth and development. The Gretchen Hagen 3 (GH3) gene family, one of three major early auxin-responsive families, is ubiquitous in the plant kingdom and its members function as regulators in modulating hormonal homeostasis, and stress adaptations. Specific Auxin-amido synthetase activity of GH3 subfamily II genes is reported to reversibly inactivate or fully degrade excess auxin through the formation of amino acid conjugates.

View Article and Find Full Text PDF

Background: The glycogen synthase kinase 3/shaggy kinase (GSK3) is a serine/threonine kinase with important roles in animals. Although GSK3 genes have been studied for more than 30 years, plant GSK genes have been studied only since the last decade. Previous research has confirmed that plant GSK genes are involved in diverse processes, including floral development, brassinosteroid signaling, and responses to abiotic stresses.

View Article and Find Full Text PDF

Drought stress results in significant losses in agricultural production, and especially that of cotton. The molecular mechanisms that coordinate drought tolerance remain elusive in cotton. Here, we isolated a drought-response gene GhKLCR1, which is a close homolog of AtKLCR1, which encodes a kinesin light chain-related protein enriched with a tetratrico peptide-repeat region.

View Article and Find Full Text PDF

Cotton is one of the major world oil crops. Cottonseed oil meets the increasing demand of fried food, ruminant feed, and renewable bio-fuels. MADS intervening keratin-like and C-terminal (MIKC)-type MADS-box genes encode transcription factors that have crucial roles in various plant developmental processes.

View Article and Find Full Text PDF

Calcium signaling regulates many developmental processes in plants. Calmodulin (CaM) is one of the most conserved calcium sensors and has a flexible conformation in eukaryotes. The molecular functions of CaM are unknown in cotton, which is a major source of natural fiber.

View Article and Find Full Text PDF

Background: Tetraploid cotton contains two sets of homologous chromosomes, the At- and Dt-subgenomes. Consequently, many markers in cotton were mapped to multiple positions during linkage genetic map construction, posing a challenge to anchoring linkage groups and mapping economically-important genes to particular chromosomes. Chromosome-specific markers could solve this problem.

View Article and Find Full Text PDF