The hydrogen embrittlement (HE) behavior of a selective laser-melted (SLM) 316L austenitic stainless steel has been investigated by hydrogen charging experiments and slow strain rate tensile tests (SSRTs) at room temperature. The results revealed that compared to the samples without H, the ultimate tensile strength (UTS) and elongation (EL) of specimens were decreased from 572 MPa to 552 MPa and from 60% to 36%, respectively, after 4 h of electrochemical hydrogenation with a current density of 100 mA/cm. The negative effects of hydrogen charging were more pronounced on the samples' ductility than on their strength.
View Article and Find Full Text PDFConventional ultrafine-grains can generate high strength in Mg alloys, but significant tradeoff of corrosion resistance due to inclusion of a large number of non-equilibrium grain boundaries. Herein, an ultrafine-grain structure consisting of dense ultrafine twins is prepared, yielding a high strength up to 469 MPa and decreasing the corrosion rate by one order of magnitude. Generally, the formation of dense ultrafine twins in Mg alloys is rather difficult, but a carefully designed multi-directional compression treatment effectively stimulates twinning nucleation within twins and refines grain size down to 300 nm after 12-passes compressions.
View Article and Find Full Text PDFHigh corrosion kinetics and localised corrosion progress are the primary concerns arising from the clinical implementation of magnesium (Mg) based implantable devices. In this study, a binary Mg-lithium (Li) alloy consisting a record high Li content of 14% (in weight) was employed as model material aiming to yield homogenous and slow corrosion behaviour in a simulated body fluid, minimum essential medium (MEM), in comparison to that of generic Mg alloy AZ31 and biocompatible Mg-0.5Zn-0.
View Article and Find Full Text PDF