ACS Appl Mater Interfaces
October 2024
The integration of high-performance transparent top electrodes with the functional layers of transparent quantum dot light-emitting diodes (T-QLEDs) poses a notable challenge. This study presents a composite transparent top electrode composed of MXene and Ag NWs. The composite electrode demonstrates exceptional transparency (84.
View Article and Find Full Text PDFMonitoring non-contact high-frequency vibrations requires improving the sensitivity and linear response of iontronic pressure sensors (IPSs). In this study, we incorporate composite electrodes comprising silver nanowires (Ag NWs) and MXene into IPSs to enhance electronic conduction and pseudocapacitance. Moreover, we utilize a novel surface-pillar microstructure, along with an internally randomized multi-bubble structure within the dielectric layer, to significantly expand the linear response range of the sensor.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2023
The increased popularity of wearable electronic devices has led to a greater need for advanced sensors. However, fabricating pressure sensors that are flexible, highly sensitive, robust, and compatible with large-scale fabrication technology is challenging. This work investigates a piezoresistive sensor constructed from an MXene/MoS hierarchical nanostructure, which is obtained through an easy and inexpensive fabrication process.
View Article and Find Full Text PDF